On the Practical Computation of Stokes Matrices

Marc Mezzarobba

CNRS, École polytechnique

Journées NuSCAP, Paris, May 2024

Joint work (in progress) with Michèle Loday-Richaud and Pascal Rémy

Main Result

Setting: $\quad L=a_{r}(x) \frac{d^{r}}{d x^{r}}+\cdots+a_{1}(x) \frac{d}{d x}+a_{0}, \quad a_{i} \in \mathbb{Q}[x]$
$a_{r}(0)=0 \quad$ (singular point)

Task. Compute the Stokes matrices of L at 0 .
Key features.
(a) implemented
(b) fully automatic
(c) for arbitrary L of pure level 1
(d) no numeric Laplace transforms
(e) error bounds

Related Work

- Mathematical theory
(a) (b)
(c)
(d)
(e)
[Horn, Trjitzinski, Turrittin, ..., Ramis, Écalle, ~1910-1990]
- Thomann, Fauvet, Richard-Jung (~1990-2010)
- van der Hoeven (2007)
- Loday-Richaud, Rémy (2012)
(a) implemented
(b) fully automatic
(c) for arbitrary L of pure level 1
(d) no numeric Laplace transforms
(e) error bounds

Motivation: Generators of the Differential Galois Group

$$
\mathrm{L}=\mathrm{a}_{\mathrm{r}}(\mathrm{x}) \frac{\mathrm{d}^{r}}{\mathrm{~d} \mathrm{x}^{r}}+\cdots+\mathrm{a}_{1}(\mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}+\mathrm{a}_{0}
$$

Theorem (Ramis, 1985). The differential Galois group of L is the algebraic group generated by:

- the monodromy matrices,
- the exponential torus,
- the Stokes matrices
(all viewed as elements of $\mathrm{GL}_{\mathrm{r}}(\mathbb{C})$ acting on local solutions at a base point x_{0}).

Application (van de Hoeven, 2007).
Symbolic-numeric algorithms for exact solutions of differential equations.
[also Llorente (2014), Chyzak-Goyer-M. (2022)]

Formal Solutions

Theorem (Fabry, 1885). The operator L has a full basis of formal solutions of the form

$$
e^{q\left(1 / x^{p}\right)} x^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{k, n} x^{n / p} \log (x)^{k}
$$

- $\mathrm{q}\left(1 / x^{p}\right) \in \overline{\mathbb{Q}}\left[\mathrm{x}^{1 / p}\right]$
- $\lambda \in \overline{\mathbb{Q}}$
- $f_{k}\left(x^{1 / p}\right)=\sum_{n} c_{k, n} x^{n / p} \in \overline{\mathbb{Q}}\left[\left[x^{1 / p}\right]\right]$, usually divergent (cvgce rad. $=0$)

Assumption. The origin is a singular point of pure level 1, i.e., the exponential parts are all of the form $e^{\alpha / x}$.

- This implies $p=1$ (no ramification anywhere).

- No exp parts \Leftrightarrow regular singular \Rightarrow the f_{k} are convergent

$$
w\left(x^{j} \frac{d^{i}}{d x^{i}}\right)=j-i
$$

Bore Summation

"Definition". A series $y(x)=x^{\lambda} \mathbb{C}[[x]][\log x]$ with $\operatorname{Re}(\lambda)>0$ is Borel-summable in the direction θ when the following steps all make sense:

$$
y(x) \in x^{\lambda} \mathbb{C}[[x]][\log x]
$$

$$
\mathcal{S}_{\theta}(y)(x)=\int_{0}^{e^{i \theta} \infty} \hat{y}(\xi) e^{-\xi / x} d \xi
$$

Bore: $\quad \mathcal{B}\left(x^{\nu} \log (x)^{k}\right)$

$$
=\frac{\mathrm{d}^{\mathrm{k}}}{\mathrm{~d} v^{\mathrm{k}}} \frac{\xi^{v-1}}{\Gamma(v)}
$$

$$
\hat{\mathrm{y}}(\xi) \text { convergent }
$$

analytic continuation

- Solutions of L are Borel-summable
- The resulting $\mathcal{S}_{\theta}(y)$ is a solution of L asymptotic to y on a domain of opening π :

$$
\forall \mathrm{n} \in \mathbb{N}, \quad S_{\theta}(y)(x)=y_{0}+y_{1} x+\cdots+y_{n-1} x^{n-1}+O\left(x^{n}\right)
$$

The Stokes Phenomenon in the Laplace Plane (1)
Analytic continuation of a sum, Stokes directions

- The $\operatorname{sum} \mathcal{S}_{\theta}(\mathrm{y})$, as a solution of L , can be analytically continued around the origin

- The analytic continuation remains $\sim y(x)$ in a domain of opening $>\pi$
- ...but the asymptotic expansion suddenly changes when crossing a Stokes direction

The Stokes Phenomenon in the Laplace Plane (2)
Daring the direction of summation, singular directions

- The sums $\mathcal{S}_{\theta}(\mathrm{y}), \theta \in\left(\theta_{1}, \theta_{2}\right)$ obtained by variing θ continuously - when possible - patch together
- The sums $y^{+}=\mathcal{S}_{\omega-\varepsilon}(y)$ and $y^{-}=\mathcal{S}_{\omega+\varepsilon}(y)$ on both sides of a Stokes direction ω are (usually) different ...but have the same asymptotic expansion!

$\omega+\varepsilon$

The Stokes Phenomenon in the Laplace Plane (2)

Variing the direction of summation, singular directions

- The sums $\mathcal{S}_{\theta}(\mathrm{y}), \theta \in\left(\theta_{1}, \theta_{2}\right)$ obtained by variing θ continuously - when possible - patch together
- The sums $\mathrm{y}^{+}=\mathcal{S}_{\omega-\varepsilon}(\mathrm{y})$ and $\mathrm{y}^{-}=\mathcal{S}_{\omega+\varepsilon}(\mathrm{y})$ on both sides of a Stokes direction ω are (usually) different ...but have the same asymptotic expansion!

- Same asymptotics $\Rightarrow y^{+}(x)-y^{-}(x)$ is exponentially small "on the whole half-plane"
- Singular directions are those s.t. $e^{-\alpha^{\prime} / x} \lll e^{-\alpha / x}$ for some exp parts $e^{-\alpha / x}, e^{-\alpha^{\prime} / x}$ I.e., $\omega=\arg \left(\alpha^{\prime}-\alpha\right)$

Stokes Matrices

Choose a basis $Y=\left(y_{1}, \ldots, y_{r}\right)$ of formal solutions

$$
y_{i}(x)=e^{\alpha_{i} / x} x^{\lambda_{i}} F_{i}(x, \log x)
$$

a singular direction ω of L
Let $Y^{ \pm}$be the sums of Y to the left/right. (Define $\mathcal{S}_{\omega}\left(e^{-\alpha / x} z(x)\right)=e^{-\alpha / x} \mathcal{S}_{\omega}(z(x))$.)
Both Y^{+}and Y^{-}are bases of analytic solutions of L on a common domain.

Definition. The Stokes matrix of L in the direction ω is the matrix of Y^{+}in the basis Y^{-}:

$$
\mathrm{Y}^{+}=\mathrm{Y}^{-}(\mathrm{I}+\mathrm{C})
$$

Remark. This definition already gives an algorithm:

- Compute the formal Borel transform \hat{Y} of Y
- Compute its analytic continuation to $\left[0, e^{i(\omega \pm \varepsilon)} \infty\right)$ numerically
- Compute the Laplace integrals numerically
- Compare

The Equation in the Borel Plane

Definition. Formal Borel transform with an exponential part:

$$
\mathcal{B}\left(e^{-\alpha / x} f(x)\right)=\hat{f}(x-\alpha) \quad \text { where } \quad \hat{f}=\mathcal{B}(f)
$$

Lemma. Given $L \in \mathbb{Q}[x]\langle d / d x\rangle$, one can find a differential operator $\hat{L} \in \mathbb{Q}[\xi]\langle d / d \xi\rangle$ such that the Borel transforms of solutions of L are solutions of \hat{L}.

Proposition.

- The finite singular points of \hat{L} are the α such that $e^{-\alpha / x}$ is an exp part of L (incl. 0).
- These are regular singular points.
(x)

The Stokes Phenomenon in the Borel Plane (1)

- The singular directions of L are the (oriented) directions where \hat{L} has $\geqslant 2$ aligned

- Contributions to the Stokes matrix in the direction ω :

$$
\begin{gathered}
e^{-\alpha / x} \\
e^{-\alpha^{\prime} / x} \rightarrow\left[\begin{array}{c|c}
\downarrow & \\
\hline+ & \\
\hline
\end{array}\right]
\end{gathered}
$$

The Stokes Phenomenon in the Borel Plane (2)
Contribution of a singular point
Let y be one of the basis elements.
To compute the corresponding column, we need to express y^{+}in the basis y^{-}.

$$
\begin{aligned}
y^{+}-y^{-} & =\int_{\mathcal{L}^{+}} \hat{y}(\xi) e^{-\xi / x} d \xi-\int_{\mathcal{L}^{-}} \hat{y}(\xi) e^{-\xi / x} d \xi \\
& =\int_{\mathcal{H}} \hat{y}(\xi) e^{-\xi / x} d \xi \\
& =\int_{\mathcal{H}_{1}} \hat{y}(\xi) e^{-\xi / x} \mathrm{~d} \xi+\int_{\mathcal{H}_{2}} \hat{\mathrm{y}}(\xi) e^{-\xi / x} \mathrm{~d} \xi+\cdots
\end{aligned}
$$

The Stokes Phenomenon in the Borel Plane (3)

Connection-to-Stokes formulae
We are left with Laplace integrals on Hankel contours enclosing a single α^{\prime}.
These can be computed by termwise integration of the local expansion at α of \hat{y} :

$$
\begin{aligned}
& \hat{\mathrm{y}}\left(\alpha^{\prime}+\zeta\right)=\zeta^{\lambda} \sum_{\mathrm{k}=0}^{\mathrm{r}} \sum_{n=0}^{\infty} c_{n, k} \zeta^{n} \log (\zeta)^{k} \\
& \substack{\begin{subarray}{c}{s=0 \\
\xi=\alpha)} }} \end{subarray} \substack{\text { (3) }} \substack{ \\
\xi} \\
& \int_{\mathcal{H}} \hat{y}(\alpha+\zeta) e^{-(\alpha+\zeta) / x} d \zeta=\sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{n, k} e^{-\alpha / x} \underbrace{\int_{\mathcal{H}} \zeta^{\lambda+n} \log (\zeta)^{k} e^{-\zeta / x} d \zeta} \\
& =\frac{d^{k}}{d \lambda^{k}} \frac{2 \pi i\left(x e^{-\pi i}\right)^{\lambda+n-1}}{\Gamma(-\lambda-n)} \\
& =x^{\lambda+n-1} \times(\text { explicit polynomial in } \log (x))
\end{aligned}
$$

- Compute enough terms of the expansion of $y^{+}-y^{-}$
- Equate the coefficients of $e^{-\beta / \chi} \chi^{\mu} \log (x)^{k}$ to write it in the basis Y^{-}

Algorithm (sketch). Input: L, ω Output: the Stokes matrix in the direction ω Initialize an $r \times r$ matrix $S:=I$
For $y=Y_{j}=e^{-\alpha / x}(\ldots)$ in a basis Y of formal solutions of L
For each singular point α^{\prime} of \hat{L} with $\arg \left(\alpha^{\prime}-\alpha\right)=\omega$
Solve the equation $\hat{\mathrm{L}}(\hat{\mathbf{y}})=0$ numerically to obtain the series expansion at α^{\prime} of the analytic continuation \hat{y}

Deduce the coordinates of $y^{+}-y$ in the basis Y^{-}using the previous slide Add the resulting coordinate vector to column j of S

Return S

Need: - Connection between regular singular points

- Computation of $1 / \Gamma$ and its derivatives [\rightarrow Johansson 2023]
- Some elementary functions; some formal operations on diff. operators and formal solutions

Removing Redundancies (1)

Computing the Stokes matrices in all directions
Fix for each α :

- a basis $Y_{[\alpha]}$ of the space $V_{[\alpha]}$ of formal solutions of L of exponential part $e^{-\alpha / x}$
- a basis $\hat{Y}_{[\alpha]}$ of the space $\hat{V}_{[\alpha]}$ of local solutions of \hat{L} at α

Compute the matrices:

- For each α, of the map $V_{[\alpha]} \rightarrow \hat{V}_{[\alpha]}$

Borel transform matrix B_{α}

$$
y \mapsto \hat{y}
$$

- For each α^{\prime}, of the map $\hat{V}_{[\alpha]} \rightarrow \quad V_{[\alpha]} \quad$ Connection-to-Stokes matrix $T_{\alpha, \alpha^{\prime}}$

$$
\hat{y} \quad \mapsto \int_{\mathcal{H}} \hat{y}(\zeta) e^{-\zeta / x} \mathrm{~d} \zeta
$$

- For each pair $\left(\alpha, \alpha^{\prime}\right)$, of 'the' an. cont. map $\hat{V}_{[\alpha]} \rightarrow \hat{\mathrm{V}}_{\left[\alpha^{\prime}\right]}$

Connection matrix $\mathrm{L}_{\alpha^{\prime}}$

Fact. The block $\left(\alpha, \alpha^{\prime}\right)$ of the Stokes matrix in the direction $\arg \left(\alpha^{\prime}-\alpha\right)$ is $\mathrm{L}_{\alpha^{\prime}} \mathrm{T}_{\alpha, \alpha^{\prime}} \mathrm{B}_{\alpha}$.

Removing Redundancies (2)

Computing all connection matrices

- Compute the connection matrices along a spanning tree of the singular points of \hat{L} as before (numerical integration of th ODE)
- Pick known $T_{\alpha, \alpha^{\prime},} \mathrm{T}_{\alpha^{\prime}, \alpha^{\prime \prime}}$ s.t. the triangle ($\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$) contains no other singular point; compute $\mathrm{T}_{\alpha, \alpha^{\prime \prime}}$ as

$$
\mathrm{T}_{\alpha, \alpha^{\prime \prime}}=\tilde{\mathrm{T}}_{\alpha^{\prime}, \alpha^{\prime \prime}} \tilde{\mathrm{T}}_{\alpha, \alpha^{\prime}}
$$

after incorporating correcting factors to get the correct branch

- Repeat

Conclusion

Summary.

Stokes matrices of LODE of pure level 1 are computable in practice
\rightarrow code available
\rightarrow roughly as fast as regular singular connection
\rightarrow rigorous error bounds

Question.

Does this approach generalize to multiple levels?
(The "direct" algorithm does, using, e.g., accelero-summation.)

