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1Main Result

Setting: L=ar(x)
dr

dxr
+ � � �+a1(x)

d
dx

+a0, ai2Q[x]

ar(0)= 0 (singular point)

Task. Compute the Stokes matrices of L at 0.

Key features.

(a) implemented

(b) fully automatic

(c) for arbitrary L of pure level 1

(d) no numeric Laplace transforms

(e) error bounds



2Related Work

(a) (b) (c) (d) (e)

� Mathematical theory
[Horn, Trjitzinski, Turrittin, . . . , Ramis, Écalle, �1910�1990]
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+

✓ ✓

� Thomann, Fauvet, Richard-Jung (�1990�2010) ✓ ? ✓

� van der Hoeven (2007) ✓ ✓
+

✓

� Loday-Richaud, Rémy (2012) � ✓

(a) implemented

(b) fully automatic

(c) for arbitrary L of pure level 1

(d) no numeric Laplace transforms

(e) error bounds



3Motivation: Generators of the Differential Galois Group

L=ar(x)
dr

dxr
+ � � �+a1(x)

d
dx

+a0

Theorem (Ramis, 1985). The di�erential Galois group of L is the algebraic group
generated by:

� the monodromy matrices,

� the exponential torus,

� the Stokes matrices

(all viewed as elements of GLr(C) acting on local solutions at a base point x0).

Application (van de Hoeven, 2007).
Symbolic-numeric algorithms for exact solutions of di�erential equations.

[also Llorente (2014), Chyzak�Goyer�M. (2022)]



4Formal Solutions

Theorem (Fabry, 1885). The operator L has a full basis of formal solutions of the form

eq(1/x
p) xλ

X

k=0

r X

n=0

1

ck,nxn/p log(x)k,

� q(1/xp) 2 Q̄[x1/p]

� λ 2 Q̄

� fk(x
1/p)=

P

n
ck,nxn/p 2 Q̄[[x1/p]], usually divergent (cvgce rad. =0)

Assumption. The origin is a singular point of pure level 1, i.e.,
the exponential parts are all of the form eα/x.

� This implies p=1 (no rami�cation anywhere).

� No exp parts, regular singular) the fk are convergent



5Borel Summation

�De�nition�. A series y(x)= xλC[[x]][log x] with Re(λ)> 0 is Borel-summable in the
direction θ when the following steps all make sense:

y(x)2 xλC[[x]][log x] Sθ(y)(x) =

Z

0

eiθ1

ŷ(ξ) e¡ξ/xdξ

Borel: B(xν log(x)k)

=
dk

dνk

ξν¡1

Γ(ν)  
¡

analytic continuation ¡
! Laplace

ŷ(ξ) convergent ¡! ŷ(ξ) analytic on eiθ [0,1)

eO(jxj) at1

� Solutions of L are Borel-summable

� The resulting Sθ(y) is a solution of L
asymptotic to y on a domain of opening π:

8n2N, Sθ(y)(x)=y0+y1 x+ � � �+yn¡1 x
n¡1+O(xn)



6The Stokes Phenomenon in the Laplace Plane (1)
Analytic continuation of a sum, Stokes directions

� The sum Sθ(y), as a solution of L, can be analytically continued around the origin

� The analytic continuation remains �y(x) in a domain of opening >π

� . . .but the asymptotic expansion suddenly changes when crossing a Stokes direction



7The Stokes Phenomenon in the Laplace Plane (2)
Variing the direction of summation, singular directions

� The sums Sθ(y), θ2 (θ1, θ2) obtained by variing θ

continuously � when possible � patch together

� The sums y+=Sω¡ε(y) and y¡=Sω+ε(y) on both
sides of a Stokes direction ω are (usually) di�erent

.. .but have the same asymptotic expansion!
≁

≁

~

� Same asymptotics ) y+(x)¡y¡(x) is exponentially small
�on the whole half-plane�

� Singular directions are those s.t. e¡α
0/xn e¡α/x for some exp parts e¡α/x, e¡α

0/x

I.e., ω= arg(α0¡α)
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8Stokes Matrices

Choose a basis Y=(y1, . . . , yr) of formal solutions
a singular direction ω of L

yi(x)= eαi/xxλi Fi(x, log x)

Let Y� be the sums of Y to the left/right. (De�ne Sω(e¡α/x z(x))= e¡α/x
Sω(z(x)).)

Both Y+ and Y¡ are bases of analytic solutions of L on a common domain.

De�nition. The Stokes matrix of L in the direction ω is the matrix of Y+ in the basis Y¡:

Y+= Y¡(I+C)

Remark. This de�nition already gives an algorithm:

• Compute the formal Borel transform Ŷ of Y

• Compute its analytic continuation to [0, ei(ω�ε)
∞) numerically

• Compute the Laplace integrals numerically

• Compare



9The Equation in the Borel Plane

De�nition. Formal Borel transform with an exponential part:

B(e¡α/xf(x))= f̂(x¡α) where f̂=B(f)

Lemma. Given L2Q[x]hd/dxi, one can �nd a di�erential operator L̂2Q[ξ]hd/dξi such
that the Borel transforms of solutions of L are solutions of L̂.

Proposition.

� The �nite singular points of L̂ are the α such that e¡α/x is an exp part of L (incl. 0).

� These are regular singular points.



10The Stokes Phenomenon in the Borel Plane (1)

� The singular directions of L are the (oriented) directions where L̂ has > 2 aligned
singular points

� Contributions to the Stokes matrix in the direction ω:

e¡α/x

#

e¡α
0/x !

2

66
4 �

3

77
5



11The Stokes Phenomenon in the Borel Plane (2)
Contribution of a singular point

Let y be one of the basis elements.

To compute the corresponding column, we need to express y+ in the basis y¡.

y+¡y¡ =

Z

L+
ŷ(ξ) e¡ξ/xdξ¡

Z

L¡
ŷ(ξ) e¡ξ/xdξ

=

Z

H
ŷ(ξ) e¡ξ/xdξ

=

Z

H1

ŷ(ξ) e¡ξ/xdξ+

Z

H2

ŷ(ξ) e¡ξ/xdξ+ � � �



12The Stokes Phenomenon in the Borel Plane (3)
Connection-to-Stokes formulae

We are left with Laplace integrals on Hankel contours enclosing a single α0.

These can be computed by termwise integration of the local expansion at α of ŷ:

ŷ(α0+ ζ) = ζλ
X

k=0

r X

n=0

1

cn,kζ
n log(ζ)k

Z

H
ŷ(α+ ζ) e¡(α+ζ)/xdζ =

X

k=0

r X

n=0

1

cn,k e¡α/x
Z

H
ζλ+n log(ζ)ke¡ζ/xdζ

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=
dk

dλk
2π i (x e¡πi)λ+n¡1

Γ(¡λ¡n)

= xλ+n¡1 � (explicit polynomial in log(x) )

� Compute enough terms of the expansion of y+¡y¡

� Equate the coe�cients of e¡β/xxµ log(x)k to write it in the basis Y¡



13Summary

Algorithm (sketch). Input: L, ω Output: the Stokes matrix in the direction ω

Initialize an r� r matrix S := I

For y= Yj= e¡α/x(. . .) in a basis Y of formal solutions of L

For each singular point α0 of L̂ with arg(α0¡α)=ω

Solve the equation L̂(ŷ)= 0 numerically to obtain the series expansion at α0 of
the analytic continuation ŷ

Deduce the coordinates of y+¡y in the basis Y¡ using the previous slide

Add the resulting coordinate vector to column j of S

Return S

Need: � Connection between regular singular points

� Computation of 1/Γ and its derivatives [! Johansson 2023]

� Some elementary functions; some formal operations on di�. operators and formal solutions



14Removing Redundancies (1)
Computing the Stokes matrices in all directions

Fix for each α:

� a basis Y[α] of the space V[α] of formal solutions of L of exponential part e¡α/x

� a basis Ŷ[α] of the space V̂[α] of local solutions of L̂ at α

Compute the matrices:

� For each α, of the map V[α] ! V̂[α]
y 7! ŷ

Borel transform matrix Bα

� For each α0, of the map V̂[α] ! V[α]

ŷ 7!

Z

H
ŷ(ζ) e¡ζ/xdζ

Connection-to-Stokes matrix Tα,α0

� For each pair (α,α0), of 'the' an. cont. map V̂[α]! V̂[α0] Connection matrix Lα0

Fact. The block (α, α0) of the Stokes matrix in the direction arg(α0¡α) is Lα0 Tα,α0Bα.



15Removing Redundancies (2)
Computing all connection matrices

� Compute the connection matrices along a spanning tree of the singular points of L̂ as
before (numerical integration of th ODE)

� Pick known Tα,α0, Tα0,α00 s.t. the triangle (α,α0, α00) contains no other singular point;
compute Tα,α00 as

Tα,α00= T̃α0,α00 T̃α,α0

after incorporating correcting factors to get the correct branch

� Repeat



16Conclusion

Summary.

Stokes matrices of LODE of pure level 1 are computable in practice

! code available

! roughly as fast as regular singular connection

! rigorous error bounds

Question.

Does this approach generalize to multiple levels?

(The �direct� algorithm does, using, e.g., accelero-summation.)


