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Main Result
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Setting: L=axx) I

a-(0)=0 (singular point)

ai € Q[x]

(Task. Compute the Stokes matrices of L at 0.

Key features.

(a) implemented

(b) fully automatic

(c) for arbitrary L of pure level 1

(d) no numeric Laplace transforms

\(e) error bounds
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(a) implemented

(b) fully automatic

(c) for arbitrary L of pure level 1
(d) no numeric Laplace transforms

(e) error bounds



Motivation: Generators of the Differential Galois Group

- dr d
= ar(X)W—F —I—al(x)a—i-ao
(Theorem (Ramis, 1985). The differential Galois group of L is the algebraic group )
generated by:
e the monodromy matrices,
e the exponential torus,
e the Stokes matrices
\(all viewed as elements of GL.(C) acting on local solutions at a base point xy). Y

Application (van de Hoeven, 2007).
Symbolic-numeric algorithms for exact solutions of differential equations.

[also Llorente (2014), Chyzak-Goyer—-M. (2022)]



Formal Solutions
(T
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heorem (Fabry, 1885). The operator L has a full basis of formal solutions of the form

a(L/xP) A z Z CenX™P log(x X)X,

k=0 n=0
o q(1/x?) eQ[x'7]
e A e

o f(x/P)="_cnx™P € Q[[x/7]], usually divergent (cvgce rad. =0)
. "o

n

\the exponential parts are all of the form e*/*.

ssumption. The origin is a singular point of pure level 1, i.e.j

e This implies p =1 (no ramification anywhere).

e No exp parts < regular singular = the f are convergent




Borel Summation >

[”Deﬁnition”. A series y(x) = x* C[[x]][log x] with Re(A) >0 is Borel-summable in the\
direction 6 when the following steps all make sense:
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y(x) € C[[x]]log S0 = [ o) etz
Borel:  B(x” log(x)¥)
_de gt T Laplace
Cdvk T(v) analytic continuation
U(&) convergent — (&) analyt1c on e*[0, 0)
@ A g O O at 0o
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e Solutions of L are Borel-summable @ ‘

e The resulting Sg(y) is a solution of L
asymptotic to y on a domain of opening 7t

YneN, So(y)(x)=vyo+yix+ - +yn_1x" 1+ 0"



The Stokes Phenomenon in the Laplace Plane (1)

Analytic continuation of a sum, Stokes directions

e The sum Sg(y), as a solution of L, can be analytically continued around the origin
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e The analytic continuation remains ~y(x) in a domain of opening >t

e ...but the asymptotic expansion suddenly changes when crossing a Stokes direction



The Stokes Phenomenon in the Laplace Plane (2)

Variing the direction of summation, singular directions

e The sums Sp(y), 6 € (61, 02) obtained by variing 6
continuously — when possible — patch together

e The sums y" =8, _¢(y) and y~=8w+(y) on both
sides of a Stokes direction w are (usually) different

...but have the same asymptotic expansion!




The Stokes Phenomenon in the Laplace Plane (2)

Variing the direction of summation, singular directions

e The sums Sp(y), 6 € (61, 02) obtained by variing 6
continuously — when possible — patch together

e The sums y" =8, _¢(y) and y~=8w+(y) on both
sides of a Stokes direction w are (usually) different

...but have the same asymptotic expansion!

e Same asymptotics = y*(x) —y (x) is exponentially small
“on the whole half-plane”
e Singular directions are those s.t. e~*/* < e~ %/* for some exp parts e =%/, e~ %'/

Le., w=arg(a’ — )



Stokes Matrices

Choose a basis Y= (yi, ..., yr) of formal solutions vi(x) = e%i/Xx Fi(x, log x)
a singular direction w of L
Let Y* be the sums of Y to the left/right. (Define S, (e~*/* z(x)) = e~ */* S (2(x)).)

Both Y and Y~ are bases of analytic solutions of L on a common domain.

Definition. The Stokes matrix of L in the direction w is the matrix of Y* in the basis Y:

Y+=Y-(I1+0C)

Remark. This definition already gives an algorithm:

e Compute the formal Borel transform Y of Y
e Compute its analytic continuation to [0, e'(“’*¢) co) numerically
e Compute the Laplace integrals numerically

o Compare



The Equation in the Borel Plane

Definition. Formal Borel transform with an exponential part:

B(e */*f(x))=f(x—«)  where f=B(f)

Lemma. Given L € Q[x](d/dx), one can find a differential operator L € Q[](d/d¢) such
that the Borel transforms of solutions of L are solutions of L.

Proposition.
e The finite singular points of [ are the « such that e~*/*is an exp part of L (incl. 0).

e These are regular singular points.
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The Stokes Phenomenon in the Borel Plane (1) 10

e The singular directions of L are the (oriented) directions where [ has > 2 aligned
singular points

o Contributions to the Stokes matrix in the direction w:

efoc/x
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The Stokes Phenomenon in the Borel Plane (2)

Contribution of a singular point

Let y be one of the basis elements.

To compute the corresponding column, we need to express y™ in the basis y .
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The Stokes Phenomenon in the Borel Plane (3)
Connection-to-Stokes formulae
We are left with Laplace integrals on Hankel contours enclosing a single «'.

These can be computed by termwise integration of the local expansion at « of U:

&

v 7
Yo' +0) = D) enxlMlog(Q)" 20 /

k=0 n=0 (3:“\
" k=0 n=0 H

_d* 2mi(xe ML
T Ak M=A—mn)
= xMn=1 x (explicit polynomialin log(x) )

e Compute enough terms of the expansion of y* —y~

e Equate the coefficients of e ~P/*x"log(x)* to write it in the basis Y~



Summary 2

[Algorithm (sketch). Input: L, w Output: the Stokes matrix in the direction w )

Initialize an v x r matrix S:=1

Fory=Y;=e~%*(...) in a basis Y of formal solutions of L
For each singular point o’ of L with arg(«’ — o) = w

Solve the equation L({J) = 0 numerically to obtain the series expansion at «’ of
the analytic continuation y

Deduce the coordinates of y* —y in the basis Y~ using the previous slide

Add the resulting coordinate vector to column j of S

\Return S

Need: e Connection between regular singular points
e Computation of 1/T"and its derivatives [— Johansson 2023]

® Some elementary functions; some formal operations on diff. operators and formal solutions



Removing Redundancies (1) 14

Computing the Stokes matrices in all directions

Fix for each «:

e a basis Y|, of the space V|4 of formal solutions of L of exponential part e /%
e abasis \A(M of the space \A/[oc] of local solutions of L at «
Compute the matrices:

e For each «, of themap Vi — V[“] Borel transform matrix B o
y = 3

e Foreach o/, of the map \A/[oc] — V(g Connection-to-Stokes matrix Ty
o~ [a@e

H
e For each pair («, o), of ‘the” an. cont. map \A/[oq — \A/[(xq Connection matrix L4/

@act. The block («, o) of the Stokes matrix in the direction arg(«’ — «) is Lo To, o ch-)




Removing Redundancies (2) 15

Computing all connection matrices

®

e Compute the connection matrices along a spanning tree of the singular points of Las
before (numerical integration of th ODE)

e Pick known Ty o, T« s.t. the triangle («, &', «”) contains no other singular point;
compute Ty o as

Toc,oc” - :roc’,cx” T(X,O(’
after incorporating correcting factors to get the correct branch

e Repeat



Conclusion
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[Summary.
Stokes matrices of LODE of pure level 1 are computable in practice
— code available

— roughly as fast as regular singular connection

\~ rigorous error bounds

Question.
Does this approach generalize to multiple levels?

(The “direct” algorithm does, using, e.g., accelero-summation.)




