On the Practical Computation of Stokes Matrices

Marc Mezzarobba

CNRS, École polytechnique

Journées NuSCAP, Paris, May 2024

Joint work (in progress) with Michèle Loday-Richaud and Pascal Rémy

Main Result

Setting:
$$L = a_r(x) \frac{d^r}{dx^r} + \dots + a_1(x) \frac{d}{dx} + a_0, \qquad a_i \in \mathbb{Q}[x]$$

 $a_r(0) = 0$ (singular point)

Task. Compute the Stokes matrices of L at 0. Key features. (a) implemented (b) fully automatic (c) for arbitrary L of pure level 1 (d) no numeric Laplace transforms (e) error bounds

Related Work

- Mathematical theory [Horn, Trjitzinski, Turrittin, ..., Ramis, Écalle, ~1910–1990]
- Thomann, Fauvet, Richard-Jung (~1990–2010)
- van der Hoeven (2007)
- Loday-Richaud, Rémy (2012)

(a) implemented
(b) fully automatic
(c) for arbitrary L of pure level 1
(d) no numeric Laplace transforms
(e) error bounds

(a)

(b)

√ ?

(c) (d) (e)

 \checkmark^+ \checkmark

Motivation: Generators of the Differential Galois Group

$$\mathbf{L} = \mathbf{a}_{\mathbf{r}}(\mathbf{x}) \frac{\mathrm{d}^{\mathbf{r}}}{\mathrm{d}\mathbf{x}^{\mathbf{r}}} + \dots + \mathbf{a}_{1}(\mathbf{x}) \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} + \mathbf{a}_{0}$$

Theorem (Ramis, 1985). The differential Galois group of L is the algebraic group generated by:

- the monodromy matrices,
- the exponential torus,
- the Stokes matrices

(all viewed as elements of $\operatorname{GL}_r(\mathbb{C})$ acting on local solutions at a base point x_0).

Application (van de Hoeven, 2007).

Symbolic-numeric algorithms for exact solutions of differential equations.

[also Llorente (2014), Chyzak-Goyer-M. (2022)]

Formal Solutions

Theorem (Fabry, 1885). The operator L has a full basis of formal solutions of the form

$$e^{q(1/x^p)}$$
 $\chi^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{k,n} \chi^{n/p} \log(x)^k,$

- $q(1/x^p) \in \overline{\mathbb{Q}}[x^{1/p}]$
- $\lambda \in \overline{\mathbb{Q}}$

• $f_k(x^{1/p}) = \sum_n c_{k,n} x^{n/p} \in \overline{\mathbb{Q}}[[x^{1/p}]]$, usually divergent (cvgce rad. = 0)

Assumption. The origin is a singular point of **pure level 1**, i.e., the exponential parts are all of the form $e^{\alpha/x}$.

- This implies p = 1 (no ramification anywhere).
- No exp parts \Leftrightarrow regular singular \Rightarrow the f_k are convergent

Borel Summation

- Solutions of L are Borel-summable
- The resulting S_θ(y) is a solution of L asymptotic to y on a domain of opening π:

 $\forall n \in \mathbb{N}, \quad S_{\theta}(y)(x) = y_0 + y_1 x + \dots + y_{n-1} x^{n-1} + O(x^n)$

The Stokes Phenomenon in the Laplace Plane (1) Analytic continuation of a sum, Stokes directions

• The sum $\mathcal{S}_{\theta}(y)$, as a solution of L, can be analytically continued around the origin

- The analytic continuation remains $\sim y(x)$ in a domain of opening $> \pi$
- ... but the asymptotic expansion suddenly changes when crossing a Stokes direction

• The sums $y^+ = S_{\omega-\varepsilon}(y)$ and $y^- = S_{\omega+\varepsilon}(y)$ on both sides of a **Stokes direction** ω are (usually) different ...but have the same asymptotic expansion!

The Stokes Phenomenon in the Laplace Plane (2) Variing the direction of summation, singular directions

• The sums $S_{\theta}(y), \theta \in (\theta_1, \theta_2)$ obtained by variing θ continuously — when possible — patch together \sim

The Stokes Phenomenon in the Laplace Plane (2) Variing the direction of summation, singular directions

The sums S_θ(y), θ ∈ (θ₁, θ₂) obtained by variing θ continuously — when possible — patch together

The sums y⁺ = S_{ω-ε}(y) and y⁻ = S_{ω+ε}(y) on both sides of a Stokes direction ω are (usually) different ...but have the same asymptotic expansion!

- Same asymptotics \Rightarrow $y^+(x) y^-(x)$ is **exponentially small** "on the whole half-plane"
- Singular directions are those s.t. $e^{-\alpha'/x} \ll e^{-\alpha/x}$ for some exp parts $e^{-\alpha/x}$, $e^{-\alpha'/x}$ I.e., $\omega = \arg(\alpha' - \alpha)$

Stokes Matrices

Choose a basis $Y = (y_1, \dots, y_r)$ of formal solutions a singular direction ω of L $y_i(x) = e^{\alpha_i/x} x^{\lambda_i} F_i(x, \log x)$

Let Y^{\pm} be the sums of Y to the left/right. (Define $S_{\omega}(e^{-\alpha/x} z(x)) = e^{-\alpha/x} S_{\omega}(z(x))$.)

Both Y^+ and Y^- are bases of analytic solutions of L on a common domain.

Definition. The **Stokes matrix** of L in the direction ω is the matrix of Y⁺ in the basis Y⁻: Y⁺ = Y⁻(I + C)

Remark. This definition already gives an algorithm:

- Compute the formal Borel transform \hat{Y} of Y
- Compute its analytic continuation to $[0, e^{i(\omega \pm \varepsilon)} \infty)$ numerically
- Compute the Laplace integrals numerically
- Compare

The Equation in the Borel Plane

Definition. Formal Borel transform with an exponential part:

$$\mathcal{B}(e^{-\alpha/x}f(x)) = \hat{f}(x-\alpha)$$
 where $\hat{f} = \mathcal{B}(f)$

Lemma. Given $L \in \mathbb{Q}[x]\langle d/dx \rangle$, one can find a differential operator $\hat{L} \in \mathbb{Q}[\xi]\langle d/d\xi \rangle$ such that the Borel transforms of solutions of L are solutions of \hat{L} .

Proposition.

- The finite **singular points** of \hat{L} are the α such that $e^{-\alpha/x}$ is an exp part of L (incl. 0).
- These are **regular** singular points.

The Stokes Phenomenon in the Borel Plane (1)

• Contributions to the Stokes matrix in the direction *ω*:

The Stokes Phenomenon in the Borel Plane (2) Contribution of a singular point

Let y be one of the basis elements.

To compute the corresponding column, we need to express y^+ in the basis y^- .

$$y^{+} - y^{-} = \int_{\mathcal{L}^{+}} \hat{y}(\xi) e^{-\xi/x} d\xi - \int_{\mathcal{L}^{-}} \hat{y}(\xi) e^{-\xi/x} d\xi$$
$$= \int_{\mathcal{H}} \hat{y}(\xi) e^{-\xi/x} d\xi$$
$$= \int_{\mathcal{H}_{1}} \hat{y}(\xi) e^{-\xi/x} d\xi + \int_{\mathcal{H}_{2}} \hat{y}(\xi) e^{-\xi/x} d\xi + \cdots$$

(3) 0.

The Stokes Phenomenon in the Borel Plane (3) Connection-to-Stokes formulae

We are left with Laplace integrals on Hankel contours enclosing a single α' .

These can be computed by termwise integration of the **local expansion at** α of \hat{y} :

$$\hat{y}(\alpha' + \zeta) = \zeta^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{n,k} \zeta^{n} \log(\zeta)^{k}$$

$$\int_{\mathcal{H}} \hat{y}(\alpha + \zeta) e^{-(\alpha + \zeta)/x} d\zeta = \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{n,k} \frac{e^{-\alpha/x}}{\int_{\mathcal{H}}} \int_{\mathcal{H}} \zeta^{\lambda + n} \log(\zeta)^{k} e^{-\zeta/x} d\zeta$$

$$= \frac{d^{k}}{d\lambda^{k}} \frac{2\pi i (x e^{-\pi i})^{\lambda + n - 1}}{\Gamma(-\lambda - n)}$$

$$= x^{\lambda + n - 1} \times (\text{explicit polynomial in } \log(x))$$

- Compute enough terms of the expansion of $y^+ y^-$
- Equate the coefficients of $e^{-\beta/x}x^{\mu}\log(x)^k$ to write it in the basis Y⁻

Summary

Algorithm (sketch). Input: L, ω Output: the Stokes matrix in the direction ω Initialize an $r \times r$ matrix S := I

For $y = Y_j = e^{-\alpha/x} (...)$ in a basis Y of formal solutions of L

For each singular point α' of \hat{L} with $\arg(\alpha' - \alpha) = \omega$

Solve the equation $\hat{L}(\hat{y}) = 0$ numerically to obtain the series expansion at α' of the analytic continuation \hat{y}

Deduce the coordinates of $y^+ - y$ in the basis Y^- using the **previous slide**

Add the resulting coordinate vector to column j of S

Return S

- Need: Connection between regular singular points
 - Computation of $1/\Gamma$ and its derivatives [\rightarrow Johansson 2023]
 - Some elementary functions; some formal operations on diff. operators and formal solutions

Removing Redundancies (1) Computing the Stokes matrices in all directions

Fix for each α :

- a basis $Y_{[\alpha]}$ of the space $V_{[\alpha]}$ of formal solutions of L of exponential part $e^{-\alpha/x}$
- a basis $\hat{Y}_{[\alpha]}$ of the space $\hat{V}_{[\alpha]}$ of local solutions of \hat{L} at α

Compute the matrices:

• For each α , of the map $\begin{array}{cc} V_{[\alpha]} & \rightarrow & \hat{V}_{[\alpha]} \\ y & \mapsto & \hat{y} \end{array}$

Borel transform matrix B_{α}

- For each α' , of the map $\hat{V}_{[\alpha]} \rightarrow V_{[\alpha]}$ Connection-to-Stokes matrix $T_{\alpha,\alpha'}$ $\hat{y} \mapsto \int_{\mathcal{H}} \hat{y}(\zeta) e^{-\zeta/x} d\zeta$
- For each pair (α, α') , of 'the' an. cont. map $\hat{V}_{[\alpha]} \rightarrow \hat{V}_{[\alpha']}$ **Conne**

Connection matrix $L_{\alpha'}$

Fact. The block (α, α') of the Stokes matrix in the direction $\arg(\alpha' - \alpha)$ is $L_{\alpha'}T_{\alpha,\alpha'}B_{\alpha}$.

Removing Redundancies (2) Computing all connection matrices

- Compute the connection matrices along a **spanning tree** of the singular points of L as before (numerical integration of th ODE)
- Pick known $T_{\alpha,\alpha'}$, $T_{\alpha',\alpha''}$ s.t. the triangle $(\alpha, \alpha', \alpha'')$ contains no other singular point; compute $T_{\alpha,\alpha''}$ as

$$T_{\alpha,\alpha^{\prime\prime}} = \tilde{T}_{\alpha^{\prime},\alpha^{\prime\prime}} \tilde{T}_{\alpha,\alpha^{\prime}}$$

after incorporating correcting factors to get the correct branch

Repeat

Conclusion

Summary.

Stokes matrices of LODE of pure level 1 are computable in practice

- \rightarrow code available
- \rightarrow roughly as fast as regular singular connection
- \rightarrow rigorous error bounds

Question.

Does this approach generalize to multiple levels?

(The "direct" algorithm does, using, e.g., accelero-summation.)