MPRI COMPALG 2025-12-10

Computing the Nth term of a P-finite sequence

1 Introduction

We have seen before how to efficiently compute the *N*th term of a C-finite sequence.

		C-finite (lecture 4)	P-finite
first N terms	arith	$\mathrm{O}(N)$	O(N)
	bit	$O(N^2)$	$\tilde{\mathrm{O}}(N^2)$
Nth term	arith	$O(\log N)$	$ ilde{\mathrm{O}}(\sqrt{N})$
	bit	O(M(N))	$ ilde{ ext{O}}(N)$

In the P-finite case, one can obviously compute the first N terms in O(N) arithmetic operations.

Over \mathbb{Z} , the bit size of the Nth term is $O(N \log N)$ and can reach $\Omega(N \log N)$. The naive method for computing the first N terms takes

$$\leq M(C \cdot \log N) + 2M(C \cdot \log N) + 3M(C \cdot \log N) + \dots + NM(C \cdot \log N) = O(N^2M(\log N))$$

bit ops. As the total size of the output can reach $\Omega(N^2)$, it is already quasi-optimal. For a single term, the complexity is far from linear in the output size, but the fast methods (e.g., using binary powering) that work in the C-finite case do not apply.

Remark. Algorithms for computing the Nth term of a P-finite sequence apply to coefficients but also $partial \ sums \sum_{n=0}^{N-1} y_n x^n$ of D-finite series and are thus useful fo evaluating D-finite functions.

Definition. We will say that the recurrence

$$b_s(n) u_{n+s} + \dots + b_0(n) u_n = 0$$
 (REC)

is nonsingular if $b_s(n) \neq 0$ for $n \in \mathbb{N}$.

Assumption. For simplicity we will restrict ourselves here to nonsingular recurrences. (Everything generalizes to singular recurrences along the lines of what we saw in the other half of the lecture.)

2 A baby steps-giant steps algorithm

We start with the problem of evaluating u_N in good *arithmetic* complexity.

2.1 Case of *N*!

Suppose first $N = \ell^2$. Write

$$N! = \underbrace{1 \times 2 \times \cdots \times \ell}_{\sqrt{N} \text{ blocks of } \sqrt{N} \text{ factors.}} \underbrace{(\ell^2 - \ell + 1) \times \cdots \times \ell^2}_{\sqrt{N} \text{ blocks of } \sqrt{N} \text{ factors.}}$$

Algorithm. Input: N, output: N! in \mathbb{K} (e.g., $\mathbb{K} = \mathbb{Z} / p \mathbb{Z}$)

1. Let
$$\ell = |\sqrt{N}|$$
.

2. Compute
$$F(X) = (X+1)\cdots(X+\ell) \in \mathbb{K}[X]$$
. O(M(ℓ) log ℓ) (baby steps)

3. Evaluate
$$F$$
 at $0, \ell, 2\ell, ..., (\ell-1)\ell$. $O(M(\ell)\log \ell)$ (giant steps)

4. Multiply:
$$F(0) \cdot F(1) \cdots F((\ell-1)\ell) \cdot (\ell^2+1) \cdots N$$
, return. $O(\ell)$
Total $O(M(\ell) \log \ell) = O(M(\sqrt{N}) \log N)$.

This simple algorithm has far-reaching consequences, such as the following.

Theorem. There is a *deterministic* integer factoring algorithm that runs in time

$$N^{1/4+o(1)}$$
.

The exponent 1/4 here was the best known until 2020!

Proof.

- If *N* is composite, then $N \wedge (\lfloor \sqrt{N} \rfloor!)$ is a proper factor.
- One can compute $\lfloor \sqrt{N} \rfloor ! \mod N$ in $\tilde{O}(N^{1/4})$ bit operations $(\tilde{O}(N^{1/4}))$ arith ops each of cost $O(M(\log N))$ using the previous algorithm over $\mathbb{Z}/N\mathbb{Z}$.
- The gcd costs $\tilde{O}(\log N)$.

Remark. Slightly better: skip step 4 and take $O(N^{1/4})$ separate gcds.

2.2 General case of P-finite sequences

The same idea applies after reducing to a first-order recurrence.

More precisely, given (u_n) satisfying (REC), write

$$\begin{bmatrix} u_{n+1} \\ \vdots \\ u_{n+s-1} \\ u_{n+s} \end{bmatrix} = -\frac{1}{b_s} \begin{bmatrix} 1 \\ \vdots \\ b_0 & \cdots & b_{s-1} \end{bmatrix} \begin{bmatrix} u_n \\ \vdots \\ u_{n+s-2} \\ u_{n+s-1} \end{bmatrix}.$$

$$(MREC)$$

$$B(n) \in \mathbb{K}[n]_{\leq d}^{s \times s}$$

Then

$$U_N = B(N-1) \cdots B(1) B(0) U_0$$
.