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Setting & Task

ﬁ L:ar(x)%—F-'- —|—al(x)dix+ao(x), ai€ Q[x]
ar(0)=

0 — 0 singular point of pure level 1 (def. later)

C | Compute the Stokes matrices of L at 0
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Implemented

Fully automatic
e No genericity assumptions

e No numeric integral transforms

Error bounds

/
[
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Some Related Work

-

L

Stokes (1847) — 1970s
Mainly special equations

Sibuya, Malgrange, Ecalle, Braaksma, Ramis, Loday-Richaud...
(Iate 1970s — early 1990s)

e Cohomological characterization

e Summability, resurgence

Thomann, Naegele, Fauvet, Richard-Jung (1990s-2000s)
Summation, Stokes matrices by classical numerical methods
van der Hoeven (2007)

Complete & fast accelero-summation algorithm

Remy (2009)

More direct algorithm for pure level 1 + other subclasses




Motivation
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Applications.

¢ Non-integrability of Hamiltonian
systems

[Morales-Ruiz & Ramis 2001, Boucher & Weil
2003, Ramis 2024, ...]

e Symbolic-numeric algorithms for
exact solutions of linear differential
equations.

[van der Hoeven 2007, Llorente 2014, ...]



Motivation

G‘heorem. [Ramis 1985]\

The differential Galois group of L is the
algebraic group generated by:

e the monodromy matrices,
o the exponential torus,
e the Stokes matrices

(all viewed as elements of GL,(C) acting

on local solutions at a base point x). )

N
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L=axx) dr

d
o ai(x) =+ ap(x)

dx
Applications.

¢ Non-integrability of Hamiltonian
systems

[Morales-Ruiz & Ramis 2001, Boucher & Weil
2003, Ramis 2024, ...]

e Symbolic-numeric algorithms for
exact solutions of linear differential
equations.

[van der Hoeven 2007, Llorente 2014, ...]



Formal Solutions

/Theorem. [Fabry 1885]\
The operator L has a full basis of formal solutions
Ae QX7
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\ <Rk €Q[[x*/?]], usually divergent )




Formal Solutions

/Theorem. [Fabry 1885]\
The operator L has a full basis of formal solutions
Ae Q[xl/ ?]
q(1/x?) X}\Z Z Crn X™P log(x)¥.
T =0 n=0
Q[x'/7] i
\ €Q[[x*/?]], usually divergent )
Assumption. The origin is a singular point of pure level 1, W .
i.e., all exponential parts are of the form e/, *
‘ i
e This implies p =1 (no ramification). )z

e No exp parts = convergent series
(regular singular point) w (Xi )=j—1



Borel Summation

“Definition”. A series y(x) =x" C[[x]|[logx] with Re(A) > 0 is Borel-summable in the
direction © when the following steps all make sense:

y(x) €x* C[[x]][log x|

The resulting Se(y) is asymptotic to y on a domain of opening 7:

vneN, Se(y)(x)=yo+yix+ - +yn_1x*1+0(x")
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Borel Summation

“Definition”. A series y(x) =x" C[[x]|[logx] with Re(A) > 0 is Borel-summable in the
direction © when the following steps all make sense:

i0

e
y(x) ex T[] flog Sa = [ (e Hae

0

Borel: B(x¥log(x)") T
_dk gt Laplace
T dvE T(v)
\Z analytic continuation o
1 1
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eOUXD) at o
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Borel Summation

“Definition”. A series y(x) =x" C[[x]|[logx] with Re(A) > 0 is Borel-summable in the
direction © when the following steps all make sense:
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e
y(x) €x*C[[][log ] So(x) = / §(&) e t/raE
0
Borel: B(x¥log(x)¥) T X
_dk gt Laplace
T dvE T(v)
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(&) convergent N U(E) analytic on e [0, c0)
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The resulting Se(y) is asymptotic to y on a domain of opening 7:

vneN, Se(y)(x)=yo+yix+ - +yn_1x*1+0(x")



The Stokes Phenomenon in the Laplace Plane (1)

Analytic continuation of Borel sums

@roposition. Formal solutions of linear ODEs of pure level 1 are Borel-summable. >

Sey~yasx—0
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around the origin




The Stokes Phenomenon in the Laplace Plane (1)

Analytic continuation of Borel sums

@roposition. Formal solutions of linear ODEs of pure level 1 are Borel-summable. >

T o0
y(x)= X}\Z Z Ckn X" log(x)® —

k=0 n=0

As a solution of L, the sum Sg(y) can be analytically continued
around the origin

The analytic continuation remains ~ y(x) in a domain of opening >

...but the asymptotic expansion suddenly changes when crossing a Stokes direction



The Stokes Phenomenon in the Laplace Plane (2)

Variing the direction of summation

The sums Sg(y), 6 € (01, 02) obtained by variing 0 £ )’

continuously — when possible — patch together 0

The sums y* and y~ on both sides w + ¢ of a singular x

direction w are (usually) different

...but have the same asymptotic expansion

(y™ —y~ exponentially small in a sector of opening 7) y+ ~y~ for Jargx — w| < Tt £

2



Stokes Matrices

Choose a basis Y= (yi, ..., yr) of formal solutions vi(x) = e%i/Xx Fi(x, log x)
a singular direction w of L

Let Y* be the sums of Y to the left/right. (Define S (e=%/*z(x)) as e ~*/* Sy (2(x)).)
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Choose a basis Y= (yi, ..., yr) of formal solutions vi(x) = e%i/Xx Fi(x, log x)
a singular direction w of L
Let Y* be the sums of Y to the left/right. (Define S (e=%/*z(x)) as e ~*/* Sy (2(x)).)

Both Y and Y~ are bases of analytic solutions of L on a common domain.

Definition. The Stokes matrix of L in the direction w is the matrix of Y+ in the basis Y:
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Stokes Matrices

Choose a basis Y= (yi, ..., yr) of formal solutions vi(x) = e%i/Xx Fi(x, log x)
a singular direction w of L
Let Y* be the sums of Y to the left/right. (Define S (e=%/*z(x)) as e ~*/* Sy (2(x)).)

Both Y and Y~ are bases of analytic solutions of L on a common domain.

Definition. The Stokes matrix of L in the direction w is the matrix of Y+ in the basis Y:

Yt =Y~ (1+C)

f'\ A first algorithm

Compute the formal Borel transform BY of Y

Compute its analytic continuation to [0, ' Hwte) o) numerically
Compute the Laplace integrals numerically

Compare



The Equation in the Borel Plane
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Transformed differential equation ~ f solution of L = Bf solution of L
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f1(x)
fa(x)
671/X fg(X)
672/)( f4(X)
672/)( f5(X)

X

Bfi(&) Bf4(&)
Bf (&) Bfs5(&)
(+extra sol)

A4

X

‘Bfa(a)

Transformed differential equation ~ f solution of L = Bf solution of L
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The Equation in the Borel Plane

fl(X)

fg(X)

671/)( fg(X)

672/)( f4(X)

672/)( f5(X) B

Bfi(&) Bf4(&)
Bf (&) Bfs5(&)
(+extra sol)

X

Transformed differential equation

Exponentials ~~ shifts

Stokes values

Regularity

A4

X

‘Bfa(a)

f solution of L = BT solution of [
B(e™**f(x)) = (Bf)(£ — )

The finite singular points of [ are the « such that
e~ %/*is an exp part of L (incl. 0)

For L of pure level one, these are regular singular
points



The Stokes Phenomenon in the Borel Plane 10

e Singular directions of L = oriented dirs where [ has > 2 aligned singular points

% N e
- ™~

e Pair («, o) of singular points of L ~~ block of the Stokes matrix w = arg(«’ — o)

e—oc/x

(1] /
e/ ; N
|

To compute the column « basis element y(x), we need to express y™ in the basis Y~




Contribution of a Singular Point

Yoy = / ge) e &xai— [ g(e)e +xag
Lt L~

+

=
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Contribution of a Singular Point

Yoy = / ge) e &xai— [ g(e)e +xag
Lt L~

— /Q(E) eﬂi/xda
H



Contribution of a Singular Point

Yoy = /g<a>e—£/Xda— G(E) e~H/xdg,
Lt L~

— /g(a) eﬂi/xda
H

_ /g<a>e-“~/*da+/ G(E) e EXdE+ -
Ha

Ho



Connection-to-Stokes Formulae

We are left with Laplace integrals on Hankel contours enclosing a single «'.

These can be computed by termwise integration of the local expansion at a’ of By:

By(«/'+0) = ) > enrMog(Q)*

k=0 n=0

/By(oc’+c> e (¥HO/xqr =
H
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We are left with Laplace integrals on Hankel contours enclosing a single «'.

These can be computed by termwise integration of the local expansion at a’ of By:

T o0

By(«/'+0) = ) > enrMog(Q)*

k=0 n=0

/ By(o+0)e(¥FOMag = 3 3 enwem/x | CFMog(0) e dg
H

12



Connection-to-Stokes Formulae 2

We are left with Laplace integrals on Hankel contours enclosing a single «'.

These can be computed by termwise integration of the local expansion at a’ of By:

By(«/'+0) = ) > enrMog(Q)*

k=0 n=0

[ By e 0ag = 33 enie x| @ og0 e < ac
H H

k=0 n=0

B dx 27i (X e—m))\+n—1
T dAk M=A—n)
= xMn—1 x (explicit polynomial in log(x))




Connection-to-Stokes Formulae 2

We are left with Laplace integrals on Hankel contours enclosing a single «'.

These can be computed by termwise integration of the local expansion at a’ of By:

By(«/'+0) = ) > enrMog(Q)*

k=0 n=0

[ By e 0ag = 33 enie x| @ og0 e < ac
H H

k=0 n=0

B dx 27i (X e—m))\+n—1
T dAk M=A—n)
= xMn—1 x (explicit polynomial in log(x))

o, 0 Compute enough terms of the expansion of y™ —y~
= . Equate the coefficients of e~/ Xxulog(x)k to write it in the basis Y~



Summary 2

Tor Naive algorithm

Stokes matrix of L in direction w w.r.t. basis (yi,...,yr):
S:=Ilxr
Forj=1,...,r

Write y;=e~%/*(...)
For each singular point o’ of L with arg(a/ — &) = w

Solve the differential equation L(By;) =0 numerically to obtain the
series expansion at o of By;

Deduce the coordinates of y;” — yj in the basis Y~ (previous slide)

S;,j +=c
Return S
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Summary 2

Tor Naive algorithm

Stokes matrix of L in direction w w.r.t. basis (yi,...,yr):
S:=Ilxr
Forj=1,...,r

Write y;=e~%/*(...)
For each singular point o’ of L with arg(a/ — &) = w
Solve the differential equation L(By;) =0 numerically to obtain the

series expansion at o of By;
/° connection between regular singular points

Deduce the coordinates of y;” — yj in the basis Y~ (previous slide)
/* evaluation of (1/T)(®
S.j+=c
Return S



Redundancies 1

o/ x

Fix for each o: e a basis Y| of the space V| of formal sol. of L of exp. part e~

e abasis \A(M of the space VM of local sol. of L at «

4 N

:;f'*i Compute the matrices:

e For each o, of themap V| — VM Borel transform matrix B
y — y
e Foreach o/, of themap V[oC — Connection-to-Stokes matrix L,/
y — / e C/ x dC
q e For each pair («, o), of ‘the” an. cont. map V[oc] — V[a/] Connection matrix T(x‘a//

The block («, o) of the Stokes matrix in the direction arg(o’ — ) is Lo To, o’ Bexe



Redundancies (2) "

i) ® Solve L along a spanning tree S of the singular points ~» (Ty,«/) a,a’eS

e For other («, o)

o Pick known Ty g, Tg o s.t. the triangle («, 3, ) contains no other singular pt

o Set To.or= Tp,a Ta,p Where Ty s = To.p up to a branch correction



Conclusion

16

& Stokes matrices of LODE of pure level 1 are computable in practice
— code available
— roughly as fast as regular singular connection

— rigorous error bounds

(» Reuse parts of this for equations with multiple levels?




