On the Practical Computation of Stokes Matrices

Marc Mezzarobba

Joint work with Michèle Loday-Richaud and Pascal Rémy

ODELIX thematic program, École polytechnique, Nov 21, 2025

Setting & Task

$$L = a_r(x)\frac{d^r}{dx^r} + \dots + a_1(x)\frac{d}{dx} + a_0(x), \qquad a_i \in \mathbb{Q}[x]$$

 $a_r(0) = 0$ — 0 singular point of **pure level 1** (def. later)

Compute the **Stokes matrices** of L at 0

- Implemented
- Fully automatic
- No genericity assumptions
- No numeric integral transforms
- Error bounds

Some Related Work

Stokes (1847) – 1970s

Mainly special equations

Sibuya, Malgrange, Écalle, Braaksma, Ramis, Loday-Richaud... (late 1970s – early 1990s)

- Cohomological characterization
- Summability, resurgence

Thomann, Naegele, Fauvet, Richard-Jung (1990s-2000s)

Summation, Stokes matrices by classical numerical methods

van der Hoeven (2007)

Complete & fast accelero-summation algorithm

Remy (2009)

More direct algorithm for pure level 1 + other subclasses

$$L = a_r(x) \frac{d^r}{dx^r} + \dots + a_1(x) \frac{d}{dx} + a_0(x)$$

Applications.

Non-integrability of Hamiltonian systems

[Morales-Ruiz & Ramis 2001, Boucher & Weil 2003, Ramis 2024, ...]

 Symbolic-numeric algorithms for exact solutions of linear differential equations.

[van der Hoeven 2007, Llorente 2014, ...]

$$L = a_r(x) \frac{d^r}{dx^r} + \dots + a_1(x) \frac{d}{dx} + a_0(x)$$

Theorem.

[Ramis 1985]

The differential Galois group of L is the algebraic group generated by:

- the monodromy matrices,
- the exponential torus,
- the Stokes matrices

(all viewed as elements of $\mathrm{GL}_r(\mathbb{C})$ acting on local solutions at a base point x_0).

Applications.

Non-integrability of Hamiltonian systems

[Morales-Ruiz & Ramis 2001, Boucher & Weil 2003, Ramis 2024, ...]

 Symbolic-numeric algorithms for exact solutions of linear differential equations.

[van der Hoeven 2007, Llorente 2014, ...]

Formal Solutions

Theorem. [Fabry 1885]

The operator L has a full basis of **formal solutions**

$$\begin{array}{c} \lambda \in \bar{\mathbb{Q}}[x^{1/p}] \\ e^{q(1/x^p)} \downarrow \\ \uparrow \\ \in \bar{\mathbb{Q}}[x^{1/p}] \end{array} \xrightarrow{k=0}^{r} \sum_{n=0}^{\infty} c_{k,n} x^{n/p} \log(x)^k.$$

$$\uparrow \\ \in \bar{\mathbb{Q}}[[x^{1/p}]], \text{ usually divergent}$$

[Fabry 1885]

Formal Solutions

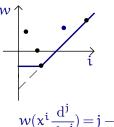
Theorem.

The operator L has a full basis of **formal solutions**

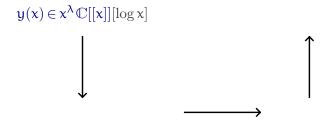
$$\begin{array}{c} \lambda \in \bar{\mathbb{Q}}[x^{1/p}] \\ \hline e^{q(1/x^p)} \bigvee_{\chi^{\lambda}} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{k,n} x^{n/p} \log(x)^k. \\ \in \bar{\mathbb{Q}}[x^{1/p}] & \uparrow \\ \in \bar{\mathbb{Q}}[[x^{1/p}]], \text{ usually divergent} \end{array}$$

Assumption. The origin is a singular point of **pure level 1**, i.e., all exponential parts are of the form $e^{\alpha/x}$.

- This implies p = 1 (no ramification).
- No exp parts ⇒ convergent series
 (regular singular point)



"Definition". A series $y(x) = x^{\lambda} \mathbb{C}[[x]][\log x]$ with $\text{Re}(\lambda) > 0$ is **Borel-summable** in the direction θ when the following steps all make sense:



$$\forall n \in \mathbb{N}, \quad S_{\theta}(y)(x) = y_0 + y_1 x + \dots + y_{n-1} x^{n-1} + O(x^n)$$

"Definition". A series $y(x) = x^{\lambda} \mathbb{C}[[x]][\log x]$ with $\text{Re}(\lambda) > 0$ is Borel-summable in the direction θ when the following steps all make sense:

$$y(x) \in x^{\lambda} \mathbb{C}[[x]][\log x]$$
Borel: $\mathcal{B}(x^{\nu} \log(x)^{k})$

$$= \frac{d^{k}}{d\nu^{k}} \frac{\xi^{\nu-1}}{\Gamma(\nu)}$$

$$\forall n \in \mathbb{N}, \quad S_{\theta}(y)(x) = y_0 + y_1 x + \dots + y_{n-1} x^{n-1} + O(x^n)$$

"Definition". A series $y(x) = x^{\lambda} \mathbb{C}[[x]][\log x]$ with $\text{Re}(\lambda) > 0$ is Borel-summable in the direction θ when the following steps all make sense:

$$y(x) \in x^{\lambda} \mathbb{C}[[x]][\log x]$$
Borel: $\mathcal{B}(x^{\nu} \log(x)^{k})$

$$= \frac{d^{k}}{d\nu^{k}} \frac{\xi^{\nu-1}}{\Gamma(\nu)}$$

$$\hat{y}(\xi) \text{ convergent}$$

$$\xi$$

$$\times$$

$$\forall n \in \mathbb{N}, \quad S_{\theta}(y)(x) = y_0 + y_1 x + \dots + y_{n-1} x^{n-1} + O(x^n)$$

"Definition". A series $y(x) = x^{\lambda} \mathbb{C}[[x]][\log x]$ with $\text{Re}(\lambda) > 0$ is Borel-summable in the direction θ when the following steps all make sense:

$$\begin{array}{c} y(x) \in x^{\lambda} \mathbb{C}[[x]][\log x] \\ \\ \text{Borel:} \ \mathcal{B}(x^{\nu} \log(x)^{k}) \\ = \frac{d^{k}}{d\nu^{k}} \frac{\xi^{\nu-1}}{\Gamma(\nu)} \\ \\ \hat{y}(\xi) \ \text{convergent} \end{array} \qquad \text{analytic continuation}$$

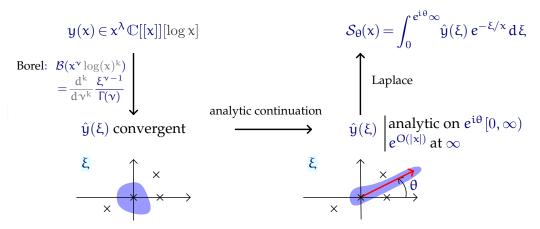
$$\forall n \in \mathbb{N}, \quad S_{\theta}(y)(x) = y_0 + y_1 x + \dots + y_{n-1} x^{n-1} + O(x^n)$$

"Definition". A series $y(x) = x^{\lambda} \mathbb{C}[[x]][\log x]$ with $\text{Re}(\lambda) > 0$ is Borel-summable in the direction θ when the following steps all make sense:

$$\begin{array}{c|c} y(x) \in x^{\lambda} \mathbb{C}[[x]][\log x] \\ \\ \text{Borel:} & \mathcal{B}(x^{\nu} \log(x)^k) \\ = \frac{d^k}{d\nu^k} \frac{\xi^{\nu-1}}{\Gamma(\nu)} \\ \\ \hat{y}(\xi) \text{ convergent} & \xrightarrow{\text{analytic continuation}} \\ \\ \frac{\xi}{x} & \xrightarrow{\times} & \xrightarrow{\times} & \xrightarrow{\times} & \xrightarrow{\times} & \xrightarrow{\theta} \\ \end{array}$$

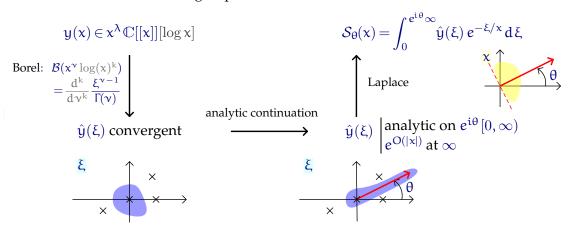
$$\forall n \in \mathbb{N}, \quad S_{\theta}(y)(x) = y_0 + y_1 x + \dots + y_{n-1} x^{n-1} + O(x^n)$$

"Definition". A series $y(x) = x^{\lambda} \mathbb{C}[[x]][\log x]$ with $\text{Re}(\lambda) > 0$ is **Borel-summable** in the direction θ when the following steps all make sense:



$$\forall n \in \mathbb{N}, \quad S_{\theta}(y)(x) = y_0 + y_1 x + \dots + y_{n-1} x^{n-1} + O(x^n)$$

"Definition". A series $y(x) = x^{\lambda} \mathbb{C}[[x]][\log x]$ with $\text{Re}(\lambda) > 0$ is **Borel-summable** in the direction θ when the following steps all make sense:



$$\forall n \in \mathbb{N}, \quad S_{\theta}(y)(x) = y_0 + y_1 x + \dots + y_{n-1} x^{n-1} + O(x^n)$$

The Stokes Phenomenon in the Laplace Plane (1)

Analytic continuation of Borel sums

Proposition. Formal solutions of linear ODEs of pure level 1 are Borel-summable.

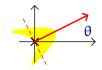
$$y(x) = e^{-\alpha/x} x^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{k,n} x^{n} \log(x)^{k} \qquad \longmapsto \qquad S_{\theta} y(x) \qquad \Longrightarrow \qquad S_{\theta} y \sim y \text{ as } x \to 0$$

The Stokes Phenomenon in the Laplace Plane (1) Analytic continuation of Borel sums

Proposition. Formal solutions of linear ODEs of pure level 1 are Borel-summable.

$$y(x) = e^{-\alpha/x} x^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{k,n} x^{n} \log(x)^{k} \qquad \longmapsto \qquad S_{\theta} y(x) \qquad \Longrightarrow \qquad S_{\theta} y \sim y \text{ as } x \to 0$$

As a solution of L, the sum $\mathcal{S}_{\theta}(y)$ can be analytically continued around the origin

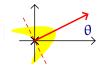


The Stokes Phenomenon in the Laplace Plane (1) Analytic continuation of Borel sums

Proposition. Formal solutions of linear ODEs of pure level 1 are Borel-summable.

$$y(x) = e^{-\alpha/x} x^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{k,n} x^{n} \log(x)^{k} \qquad \longmapsto \qquad S_{\theta} y(x) \qquad \Longrightarrow \qquad S_{\theta} y \sim y \text{ as } x \to 0$$

As a solution of L, the sum $\mathcal{S}_{\theta}(y)$ can be analytically continued around the origin

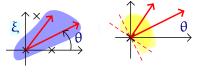


The analytic continuation remains $\sim y(x)$ in a domain of opening $> \pi$

...but the asymptotic expansion suddenly changes when crossing a **Stokes direction**

The Stokes Phenomenon in the Laplace Plane (2) Variing the direction of summation

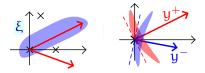
The sums $S_{\theta}(y)$, $\theta \in (\theta_1, \theta_2)$ obtained by variing θ **continuously** — when possible — patch together



The sums y^+ and y^- on both sides $\omega \pm \varepsilon$ of a **singular direction** ω are (usually) different

...but have the same asymptotic expansion

 $(y^+ - y^-)$ exponentially small in a sector of opening π)



$$y^+ \sim y^-$$
 for $|\arg x - \omega| < \frac{\pi}{2} - \varepsilon$

Choose a basis $Y = (y_1, \dots, y_r)$ of formal solutions a singular direction ω of L

 $y_i(x) = e^{\alpha_i/x} x^{\lambda_i} F_i(x, \log x)$

Let Y^{\pm} be the sums of Y to the left/right. (Define $S_{\omega}(e^{-\alpha/x}z(x))$ as $e^{-\alpha/x}S_{\omega}(z(x))$.)

Stokes Matrices

Choose a basis $Y = (y_1, \dots, y_r)$ of formal solutions a singular direction ω of L

$$y_i(x) = e^{\alpha_i/x} x^{\lambda_i} F_i(x, \log x)$$

Let Y^{\pm} be the sums of Y to the left/right. (Define $\mathcal{S}_{\omega}(e^{-\alpha/x}z(x))$ as $e^{-\alpha/x}\mathcal{S}_{\omega}(z(x))$.)

Both Y^+ and Y^- are bases of analytic solutions of L on a common domain.

Definition. The **Stokes matrix** of L in the direction ω is the matrix of Y⁺ in the basis Y⁻:

$$Y^+ = Y^-(I+C)$$

Stokes Matrices

Choose a basis $Y = (y_1, \dots, y_r)$ of formal solutions a singular direction ω of L

$$y_i(x) = e^{\alpha_i/x} x^{\lambda_i} F_i(x, \log x)$$

Let Y^{\pm} be the sums of Y to the left/right. (Define $S_{\omega}(e^{-\alpha/x}z(x))$ as $e^{-\alpha/x}S_{\omega}(z(x))$.)

Both Y^+ and Y^- are bases of analytic solutions of L on a common domain.

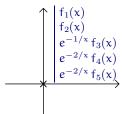
Definition. The **Stokes matrix** of L in the direction ω is the matrix of Y⁺ in the basis Y⁻:

$$Y^+ = Y^-(I+C)$$

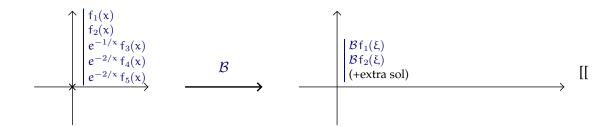
A first algorithm

- Compute the formal Borel transform BY of Y
- Compute its analytic continuation to $[0, e^{i(\omega \pm \varepsilon)} \infty)$ numerically
- Compute the Laplace integrals numerically
- Compare

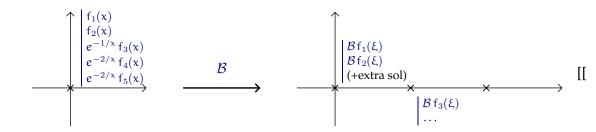
The Equation in the Borel Plane



[[

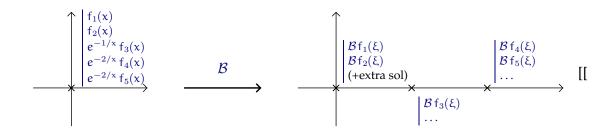


Transformed differential equation f solution of $L \Rightarrow \mathcal{B}f$ solution of \hat{L}



Transformed differential equation
$$f$$
 solution of $L \Rightarrow \mathcal{B}f$ solution of \hat{L}

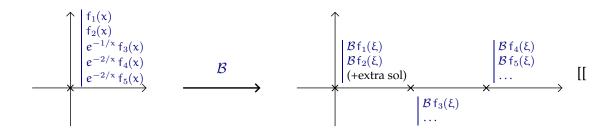
Exponentials \rightsquigarrow shifts $\mathcal{B}(e^{-\alpha/x}f(x)) = (\mathcal{B}f)(\xi - \alpha)$



Transformed differential equation
$$f$$
 solution of $L \Rightarrow \mathcal{B}f$ solution of \hat{L}

Exponentials \rightsquigarrow shifts $\mathcal{B}(e^{-\alpha/x}f(x)) = (\mathcal{B}f)(\xi - \alpha)$

The Equation in the Borel Plane



Transformed differential equation f solution of $L \Rightarrow \mathcal{B}f$ solution of \hat{L}

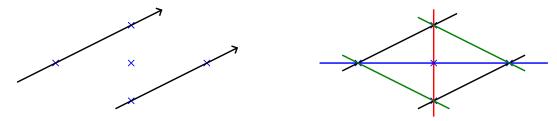
Exponentials \rightsquigarrow shifts $\mathcal{B}(e^{-\alpha/x}f(x)) = (\mathcal{B}f)(\xi - \alpha)$

Stokes values The finite **singular points** of \hat{L} are the α such that $e^{-\alpha/x}$ is an exp part of L (incl. 0)

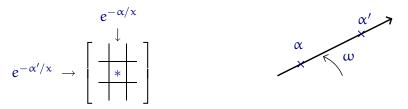
Regularity For L of pure level one, these are **regular singular** points

The Stokes Phenomenon in the Borel Plane

• Singular directions of L = oriented dirs where \hat{L} has $\geqslant 2$ aligned singular points



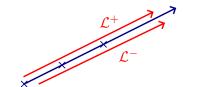
• Pair (α, α') of singular points of $\hat{L} \leadsto \text{block}$ of the Stokes matrix $\omega = \arg(\alpha' - \alpha)$



To compute the column \leftrightarrow basis element y(x), we need to express y^+ in the basis Y^-

Contribution of a Singular Point

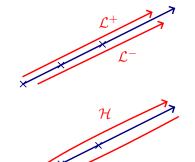
$$y^+ - y^- = \int_{C^+} \hat{y}(\xi) e^{-\xi/x} d\xi - \int_{C^-} \hat{y}(\xi) e^{-\xi/x} d\xi$$



Contribution of a Singular Point

$$y^+ - y^- \ = \ \int_{\mathcal{L}^+} \! \hat{y}(\xi) \, e^{-\xi/x} \, d \, \xi - \int_{\mathcal{L}^-} \! \hat{y}(\xi) \, e^{-\xi/x} \, d \, \xi$$

$$= \int_{\mathcal{H}} \hat{y}(\xi) e^{-\xi/x} d\xi$$

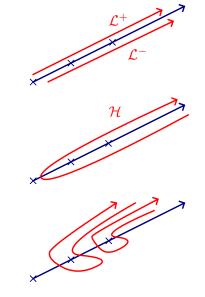


Contribution of a Singular Point

$$y^+ - y^- \ = \ \int_{\mathcal{L}^+} \! \hat{y}(\xi) \, e^{-\xi/x} \, d \, \xi - \int_{\mathcal{L}^-} \! \hat{y}(\xi) \, e^{-\xi/x} \, d \, \xi$$

$$= \int_{\mathcal{H}} \hat{y}(\xi) e^{-\xi/x} d\xi$$

$$= \int_{\mathcal{H}_1} \hat{\mathbf{y}}(\xi) \, e^{-\xi/x} \, \mathrm{d}\xi + \int_{\mathcal{H}_2} \hat{\mathbf{y}}(\xi) \, e^{-\xi/x} \, \mathrm{d}\xi + \cdots$$



We are left with Laplace integrals on Hankel contours enclosing a single α' .

$$\mathcal{B} \mathtt{y}(\alpha' + \zeta) \ = \ \zeta^{\lambda} \sum_{k=0}^{r} \, \sum_{n=0}^{\infty} \, c_{n,k} \, \zeta^{n} \log(\zeta)^{k}$$

$$\int_{\mathcal{H}} \mathcal{B}y(\alpha' + \zeta) e^{-(\alpha' + \zeta)/x} d\zeta =$$

We are left with Laplace integrals on Hankel contours enclosing a single α' .

$$\mathcal{B}y(\alpha' + \zeta) = \zeta^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{n,k} \zeta^{n} \log(\zeta)^{k}$$

$$\int_{\mathcal{H}}\!\mathcal{B}y(\alpha'+\zeta)\,e^{-(\alpha'+\zeta)/x}\,d\zeta\ =\ \sum_{k=0}^{r}\,\sum_{n=0}^{\infty}\,c_{n,k}\frac{e^{-\alpha'/x}}{e^{-\alpha'/x}}\underbrace{\int_{\mathcal{H}}\!\zeta^{\lambda+n}\log(\zeta)^{k}e^{-\zeta/x}\,d\zeta}_{\mathcal{H}}$$

We are left with Laplace integrals on Hankel contours enclosing a single α' .

$$\begin{split} \mathcal{B}y(\alpha'+\zeta) \; &=\; \zeta^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{n,k} \zeta^{n} \log(\zeta)^{k} \\ \int_{\mathcal{H}} \mathcal{B}y(\alpha'+\zeta) \, e^{-(\alpha'+\zeta)/x} \, d\zeta \; &=\; \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{n,k} \frac{e^{-\alpha'/x}}{\int_{\mathcal{H}}} \underbrace{\int_{\mathcal{H}}^{\lambda+n} \log(\zeta)^{k} e^{-\zeta/x} \, d\zeta}_{\mathcal{H}} \\ &= \frac{d^{k}}{d\lambda^{k}} \frac{2 \, \pi \, i \, (x \, e^{-\pi i})^{\lambda+n-1}}{\Gamma(-\lambda-n)} \\ &= x^{\lambda+n-1} \times (\text{explicit polynomial in } \log(x)) \end{split}$$

We are left with Laplace integrals on Hankel contours enclosing a single α' .

$$\begin{split} \mathcal{B}y(\alpha'+\zeta) \; &=\; \zeta^{\lambda} \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{n,k} \zeta^{n} \log(\zeta)^{k} \\ \int_{\mathcal{H}} \mathcal{B}y(\alpha'+\zeta) \, e^{-(\alpha'+\zeta)/x} \, d\zeta \; &=\; \sum_{k=0}^{r} \sum_{n=0}^{\infty} c_{n,k} \frac{e^{-\alpha'/x}}{\int_{\mathcal{H}}} \zeta^{\lambda+n} \log(\zeta)^{k} e^{-\zeta/x} \, d\zeta \\ &= \frac{d^{k}}{d\lambda^{k}} \frac{2 \pi i \left(x \, e^{-\pi i}\right)^{\lambda+n-1}}{\Gamma(-\lambda-n)} \\ &= \frac{x^{\lambda+n-1}}{\chi^{\lambda+n-1}} \times (\text{explicit polynomial in } \log(x)) \end{split}$$

- Compute enough terms of the expansion of $y^+ y^-$
- Equate the coefficients of $e^{-\alpha'/x} \chi^{\mu} \log(x)^k$ to write it in the basis Y⁻

Summary

Naive algorithm

Stokes matrix of L in direction ω w.r.t. basis (y_1, \dots, y_r) :

$$S := I_{r \times r}$$
For $j = 1, ..., r$
Write $y_j = e^{-\alpha/x} (...)$

For each singular point α' of \hat{L} with $\arg(\alpha'-\alpha)=\omega$

Solve the differential equation $\hat{L}(\mathcal{B}y_j) = 0$ numerically to obtain the series expansion at α' of $\mathcal{B}y_j$

Deduce the coordinates of $y_j^+ - y_j$ in the basis Y^- (previous slide)

$$S_{:,j} += c$$

Return S

Summary

Naive algorithm

Stokes matrix of L in direction ω w.r.t. basis (y_1, \ldots, y_r) :

$$\begin{split} S := & I_{r \times r} \\ For j = 1, \dots, r \\ Write \ y_j = & e^{-\alpha/x} (\dots) \end{split}$$

For each singular point α' of \hat{L} with $\arg(\alpha' - \alpha) = \omega$

Solve the differential equation $\hat{L}(\mathcal{B}y_j) = 0$ numerically to obtain the series expansion at α' of $\mathcal{B}y_j$

connection between regular singular points

Deduce the coordinates of $y_j^+ - y_j$ in the basis Y⁻ (previous slide)

$$S_{:,j} += c$$

Return S

Summary

Naive algorithm

Stokes matrix of L in direction ω w.r.t. basis (y_1, \dots, y_r) :

$$S := I_{r \times r}$$

For $j = 1, \dots, r$

Write $y_j = e^{-\alpha/x}(...)$

For each singular point α' of \hat{L} with $\arg(\alpha' - \alpha) = \omega$

Solve the differential equation $\hat{L}(\mathcal{B}y_j) = 0$ numerically to obtain the series expansion at α' of $\mathcal{B}y_j$

connection between regular singular points

Deduce the coordinates of $y_j^+ - y_j$ in the basis Y⁻ (previous slide)

 \sim evaluation of $(1/\Gamma)^{(k)}$

$$S_{:,j} += c$$

Return S

Redundancies

Fix for each α : • a basis $Y_{[\alpha]}$ of the space $V_{[\alpha]}$ of formal sol. of L of exp. part $e^{-\alpha/x}$

• a basis $\hat{Y}_{[\alpha]}$ of the space $\hat{V}_{[\alpha]}$ of local sol. of \hat{L} at α

Compute the matrices:

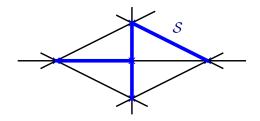
• For each α , of the map $V_{[\alpha]} \rightarrow \hat{V}_{[\alpha]}$ Bor $y \mapsto \hat{y}$

Borel transform matrix B_{α}

- For each α' , of the map $\hat{V}_{[\alpha]} \to V_{[\alpha]}$ Connection-to-Stokes matrix $L_{\alpha'}$ $\hat{y} \mapsto \int_{\mathcal{H}} \hat{y}(\zeta) \, e^{-\zeta/x} \, d\zeta$
- For each pair (α, α') , of 'the' an. cont. map $\hat{V}_{[\alpha]} \to \hat{V}_{[\alpha']}$ Connection matrix $T_{\alpha, \alpha'}$

The block (α, α') of the Stokes matrix in the direction $\arg(\alpha' - \alpha)$ is $L_{\alpha'} T_{\alpha, \alpha'} B_{\alpha}$.

Redundancies (2)



- Solve \mathring{L} along a spanning tree $\mathcal S$ of the singular points $\leadsto (T_{\alpha,\alpha'})_{\alpha,\alpha'\in\mathcal S}$
- For other (α, α')
 - $\circ \ \ \text{Pick known} \ T_{\alpha,\beta}\text{, } T_{\beta,\alpha'} \text{ s.t. the triangle } (\alpha,\beta,\alpha') \text{ contains no other singular pt}$
 - $\circ \ \ \text{Set} \ T_{\alpha,\alpha'} \! = \! \tilde{T}_{\beta,\alpha'} \, \tilde{T}_{\alpha,\beta} \ \text{where} \ \tilde{T}_{\alpha,\beta} \! = \! T_{\alpha,\beta} \ \text{up to a branch correction}$

Stokes matrices of LODE of pure level 1 are computable in practice

- → code available
- → roughly as fast as regular singular connection
- \rightarrow rigorous error bounds

Reuse parts of this for equations with multiple levels?