Numerical Evaluation of D-Finite Functions
NumGfun and Beyond

Marc Mezzarobba

RISC, JKU Linz

Sage Days 49, Orsay
2013-06-20
D-Finite Functions
Elementary and Special Functions

\[
\begin{align*}
\sin x & \quad \cos x & \quad e^x & \quad \ln x \\
\tan x & \quad \arctan x & \quad \cot x & \quad \tanh x \\
\text{Ai} x & \quad \text{Bi} x & \quad \text{Si} x & \quad \text{Ci} x \\
\text{erf} x & \quad J_0(x) & \quad J_1(x) & \quad Y_0(x) \\
\Gamma(x) & \quad \zeta(x) & \quad W(x) & \quad C_{2,1/5}(x)
\end{align*}
\]
An analytic function $y(z) : \mathbb{C} \to \mathbb{C}$ is said to be D-finite (holonomic) iff it satisfies a linear (homogeneous) ODE with polynomial coefficients:

$$a_r(z) y^{(r)}(z) + \cdots + a_1(z) y'(z) + a_0(z) y(z) = 0, \quad a_j \in \mathbb{K}[z].$$

The sequence of Taylor coefficients of a D-finite functions obeys a linear recurrence relation with polynomial coefficients.

Example: $y(z) = \sin z$

$$y''(z) + y(z) = 0 \quad y(0) = 0, \quad y'(0) = 1$$
D-Finite Functions

An analytic function \(y(z) : \mathbb{C} \rightarrow \mathbb{C} \) is said to be D-finite (holonomic) iff it satisfies a linear (homogeneous) ODE with polynomial coefficients:

\[
a_r(z) y^{(r)}(z) + \cdots + a_1(z) y'(z) + a_0(z) y(z) = 0, \quad a_j \in \mathbb{K}[z].
\]

- The sequence of Taylor coefficients of a D-finite functions obeys a linear recurrence relation with polynomial coefficients.

Example: \(y(z) = K_0(z) \) (modified Bessel function)

\[
z y''(z) + y'(z) - z y(z) = 0
\]
A formal power series \(y(z) \in \mathbb{K}[[z]] \) is said to be \textbf{D-finite} (holonomic) iff it satisfies a linear (homogeneous) ODE with polynomial coefficients:

\[
a_r(z) y^{(r)}(z) + \cdots + a_1(z) y'(z) + a_0(z) y(z) = 0, \quad a_j \in \mathbb{K}[z].
\]

- A formal power series is D-finite iff its coefficients obey a linear recurrence relation with polynomial coefficients.
- Symbolic specifications [Joyal, Flajolet...] translate into algebraic / differential equations

Example: \(y(z) = \sum_{n=0}^{\infty} n!z^n \)

\[
z^2 y''(z) + (3z - 1) y'(z) + y(z) = 0
\]
Elementary and Special Functions

\begin{align*}
\sin x & \quad & \cos x & \quad & e^x & \quad & \ln x \\
\tan x & \quad & \arctan x & \quad & \cot x & \quad & \tanh x \\
\text{Ai} x & \quad & \text{Bi} x & \quad & \text{Si} x & \quad & \text{Ci} x \\
\text{erf} x & \quad & J_0(x) & \quad & J_1(x) & \quad & Y_0(x) \\
\Gamma(x) & \quad & \zeta(x) & \quad & W(x) & \quad & C_{2,1/5}(x)
\end{align*}
Elementary and Special Functions

- $\sin x
- \cos x
- e^x
- \ln x
- \tan x
- \arctan x
- \cot x
- \tanh x
- \text{Ai } x
- \text{Bi } x
- \text{Si } x
- \text{Ci } x
- \text{erf } x
- J_0(x)
- J_1(x)
- Y_0(x)
- \Gamma(x)
- \zeta(x)
- W(x)
- C_{2,1/5}(x)

\text{ad hoc code vs uniform framework}

Marc Mezzarobba (RISC, JKU Linz) Numerical Evaluation of D-Finite Functions
A Dictionary of D-Finite Functions

Welcome to this interactive site on Mathematical Functions, with properties, truncated expansions, numerical evaluations, plots, and more. The functions currently presented are elementary functions and special functions of a single variable. More functions — special functions with parameters, orthogonal polynomials, sequences — will be added with the project advances.

Select a special function from the list

- Help on selecting and configuring the mathematical rendering
- DDMF developers list
- Motivation of the project

Contents
- The inverse cosecant arccsc(x)
- The inverse cosine arccos(x)
- The inverse cotangent arccot(x)
- The inverse hyperbolic cosecant arccsch(x)
- The Airy function of the first kind Ai(x)
- The inverse secant arcsec(x)
- The inverse sine arcsin(x)
- The inverse tangent arctan(x)
- The Airy function (of the second kind) Bi(x)
- The hyperbolic cosine integral Chi(x)
- The cosine integral Ci(x)
- The cosine cos(x)
- The exponential integral Ei(x)
- The error function erf(x)
- The complementary error function erfc(x)
- The imaginary error function erfi(x)
Welcome to this interactive site on Mathematical Functions, with properties, truncated expansions, numerical evaluations, plots, and more. The functions currently presented are elementary functions and special functions of a single variable. More functions — special functions with parameters, orthogonal polynomials, sequences — will be added with the project advances.

Contents
- The inverse cosecant \(\text{arccsc} (x) \)
- The inverse cosine \(\text{arccos} (x) \)
- The inverse cotangent \(\text{arccot} (x) \)
- The inverse hyperbolic cosecant \(\text{arccsch} (x) \)
- The Airy function of the first kind \(\text{Ai} (x) \)
- The inverse secant \(\text{arcsec} (x) \)
- The inverse sine \(\text{arcsin} (x) \)
- The inverse tangent \(\text{arctan} (x) \)
- The Airy function (of the second kind) \(\text{Bi} (x) \)
- The hyperbolic cosine integral \(\text{Chi} (x) \)
- The cosine integral \(\text{Ci} (x) \)
- The cosine \(\text{cos} (x) \)
- The exponential integral \(\text{Ei} (x) \)
- The error function \(\text{erf} (x) \)
- The complementary error function \(\text{erfc} (x) \)
- The imaginary error function \(\text{erfi} (x) \)
The Special Function $Ai(x)$

1. Differential equation

The function $Ai(x)$ satisfies

$$\frac{d^2}{dx^2} y(x) - xy(x) = 0$$

with initial values $y(0) = 1/3 \frac{\sqrt[3]{3}}{\Gamma(2/3)}, (y')(0) = -1/2 \frac{\sqrt[3]{3}\Gamma(2/3)}{\pi}$.

2. Plot of $Ai(x)$
A Dictionary of D-Finite Functions

1. Differential equation

The function $\text{Ai}(x)$ satisfies

$$\frac{d^2}{dx^2} y(x) - xy(x) = 0$$

with initial values $y(0) = 1/3 \frac{\sqrt[3]{3}}{\Gamma(2/3)}$, $(y')(0) = -1/2 \frac{\sqrt[3]{3}\Gamma(2/3)}{\pi}$.

2. Plot of $\text{Ai}(x)$
A Dictionary of D-Finite Functions

3. Numerical Evaluation

\[\text{Ai} \left(\frac{1}{4} + \frac{1}{4} i \right) \approx 0.28881085 - 0.06285935 i. \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n]\) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^* i \).)

path = \(\frac{1}{4} + \frac{1}{4} * i \) precision = 8

Submit Query

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of Airy\(\text{Ai} \) at 0:

\[\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{3} \frac{3^{3/2} x^3}{9^n \Gamma(n + 2/3) n!} - \frac{1}{9} \frac{3^{2/3} x^3 n + 1}{9^n \Gamma(n + 4/3) n!}. \]
A Dictionary of D-Finite Functions

3. Numerical Evaluation

\[\text{Ai} \left(\frac{1}{4} + \frac{1}{4}i \right) \approx 0.28881085 - 0.06285935i. \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n]\) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^*i \).)

\[\text{path} = 1/4 + 1/4i \quad \text{precision} = 8 \]

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of AiryAi at 0:

\[\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{3} \frac{\sqrt{3} x^3 n}{9^n \Gamma(n + 2/3) n!} - \frac{1}{9} \frac{3^{2/3} x^3 n+1}{9^n \Gamma(n + 4/3) n!}. \]
A Dictionary of D-Finite Functions

3. Numerical Evaluation

\[\text{Ai} \left(\frac{1}{4} + \frac{1}{4} i \right) \approx 0.28881085 - 0.06285935 i. \]

(Below, path may be either a point \(z \) or a broken-line path \(\{ z_1, z_2, \ldots, z_n \} \) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^* i \).)

\[\text{path} = \frac{1}{4} + \frac{1}{4} i \quad \text{precision} = 80 \]

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of AiryAi at 0:

\[\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{\sqrt{3} x^3}{9^n \Gamma(n + 2/3) n!} - \frac{3^{2/3} x^3}{9^n \Gamma(n + 4/3) n!}. \]
3. Numerical Evaluation

\[\text{Ai}(1/4 + 1/4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647 \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n]\) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^* i \).)

\[\text{path} = 1/4 + 1/4^* i \quad \text{precision} = 80 \]

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of \(\text{AiryAi} \) at 0:

\[\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{3} \frac{\sqrt{3} x^3 n}{9^n \Gamma(n + 2/3) n!} - \frac{1}{9} \frac{3^{2/3} x^3 n + 1}{9^n \Gamma(n + 4/3) n!} \]
A Dictionary of D-Finite Functions

▶ computed from the ODE
▶ rigorous error bounds
▶ arbitrary precision

3. Numerical Evaluation

\[\text{Ai} \left(\frac{1}{4} + \frac{1}{4} i \right) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647 \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n]\) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^* i \).)

\[\text{path} = \frac{1}{4} + \frac{1}{4} i \quad \text{precision} = 80 \]

Submit Query

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of AiryAi at 0:

\[
\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{3} \frac{\sqrt[3]{3} x^3 n}{9^n \Gamma(n+2/3) n!} - \frac{1}{9} \frac{3^{2/3} x^3 n+1}{9^n \Gamma(n+4/3) n!}.
\]
A Dictionary of D-Finite Functions

- computed from the ODE
- rigorous error bounds
- arbitrary precision
A Dictionary of D-Finite Functions

3. Numerical Evaluation

\(\text{Ai}(1/4 + 1/4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647 \)

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n]\) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^i \).)

\[\text{path} = \frac{1}{4} + \frac{1}{4} i \quad \text{precision} = 80 \]

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of \(\text{AiryAi} \) at 0:

\[
\text{Ai}(x) = \sum_{n=0}^{\infty} 1/3 \frac{\sqrt{3}x^3n}{9^n \Gamma(n + 2/3)n!} - 1/9 \frac{3^{2/3}x^3n+1}{9^n \Gamma(n + 4/3)n!}.
\]
A Dictionary of D-Finite Functions

3. Numerical Evaluation

\[\text{Ai}(1/4 + 1/4 \, i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647 \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n]\) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y \, i \).

\[
\text{path} = 1/4 + 1/4 \, i \quad \text{precision} = 80
\]

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of \(\text{AiryAi} \) at 0:

\[
\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{3} \frac{3^{3/2} x^3 n}{9^n \Gamma(n + 2/3) n!} - \frac{1}{9} \frac{3^{2/3} x^3 n + 1}{9^n \Gamma(n + 4/3) n!}.
\]
A Dictionary of D-Finite Functions

3. Numerical Evaluation

\[\text{Ai}(1/4 + 1/4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647 \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n] \) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^* \text{i} \).)

\[\text{path} = -5 \quad \text{precision} = 80 \quad \text{Submit Query} \]

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of AiryAi at 0:

\[
\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\sqrt{3} x^3 n^{3/2}}{9^n \Gamma(n + 2/3)} - \frac{1}{9} \frac{3^{2/3} x^3 n^{1+1}}{9^n \Gamma(n + 4/3)}.
\]
A Dictionary of D-Finite Functions

3. Numerical Evaluation

\[\text{Ai}(1/4 + 1/4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647 \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n]\) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^*i \).)

path = -5, precision = 80

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of \(\text{AiryAi} \) at 0:

\[
\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{3} \sqrt{3} x^3 \frac{3^n n}{9^n \Gamma(n + 2/3) n!} - \frac{1}{9} \frac{3^{2/3} x^3 n + 1}{9^n \Gamma(n + 4/3) n!}.
\]
3. Numerical Evaluation

\[\text{Ai}(1/4 + 1/4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647 \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n] \) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^* i \).)

\[\text{path} = -5 \quad \text{precision} = 800 \]

4. Taylor expansion of \(\text{Ai}(x) \) at 0

- Expansion of \(\text{AiryAi} \) at 0:

\[
\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{3} \frac{\sqrt[3]{3} x^3 n}{9^n \Gamma(n + 2/3) n!} - \frac{1}{9} \frac{3^{2/3} x^3 n^{1+1}}{9^n \Gamma(n + 4/3) n!}.
\]
A Dictionary of D-Finite Functions

3. Numerical Evaluation

\[\text{Ai}(-5) \approx 0.35076100902411431978801632769674221484443250893087208211128178049911192682 \]

(Below, path may be either a point \(z \) or a broken-line path \([z_1, z_2, \ldots, z_n]\) along which to perform analytic continuation of the solution of the defining differential equation. Each \(z_k \) should be of the form \(x + y^*i \).)

\[\text{path} = -5 \quad \text{precision} = 800 \]

Submit Query

4. Taylor expansion of \(\text{Ai}(x) \) at \(0 \)

- Expansion of AiryAi at 0:

\[
\text{Ai}(x) = \sum_{n=0}^{\infty} \frac{1}{3} \frac{\sqrt{3}x^3 n}{9^n \Gamma(n + 2/3)n!} - \frac{1}{9} \frac{3^{2/3}x^3 n+1}{9^n \Gamma(n + 4/3)n!}.
\]
<table>
<thead>
<tr>
<th>0.9900</th>
<th>0.42345 08779 18527</th>
<th>0.83850 80695 55370</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.42336 70387 10965</td>
<td>0.83855 04104 51134</td>
</tr>
<tr>
<td>02</td>
<td>0.42328 32076 37097</td>
<td>0.83859 27429 63383</td>
</tr>
<tr>
<td>03</td>
<td>0.42319 93846 98665</td>
<td>0.83863 50670 92932</td>
</tr>
<tr>
<td>04</td>
<td>0.42311 55698 97410</td>
<td>0.83867 73828 40594</td>
</tr>
<tr>
<td>0.9905</td>
<td>0.42303 17632 35074</td>
<td>0.83871 96902 07183</td>
</tr>
<tr>
<td>06</td>
<td>0.42294 79647 13396</td>
<td>0.83876 19891 93512</td>
</tr>
<tr>
<td>07</td>
<td>0.42286 41743 34116</td>
<td>0.83880 42798 00397</td>
</tr>
<tr>
<td>08</td>
<td>0.42278 03920 98971</td>
<td>0.83884 65620 28651</td>
</tr>
<tr>
<td>09</td>
<td>0.42269 66180 09698</td>
<td>0.83888 88358 79088</td>
</tr>
<tr>
<td>0.9910</td>
<td>0.42261 28520 68035</td>
<td>0.83893 11013 52524</td>
</tr>
<tr>
<td>11</td>
<td>0.42252 90942 75717</td>
<td>0.83897 33584 49774</td>
</tr>
<tr>
<td>12</td>
<td>0.42244 53446 34478</td>
<td>0.83901 56071 71651</td>
</tr>
<tr>
<td>13</td>
<td>0.42236 16031 46054</td>
<td>0.83905 78475 18972</td>
</tr>
<tr>
<td>14</td>
<td>0.42227 78698 12177</td>
<td>0.83910 00794 92552</td>
</tr>
<tr>
<td>0.9915</td>
<td>0.42219 41446 34579</td>
<td>0.83914 23030 93207</td>
</tr>
<tr>
<td>16</td>
<td>0.42211 04276 1119</td>
<td>0.83935 32955 31151</td>
</tr>
<tr>
<td>17</td>
<td>0.42202 67187 5154</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.42194 30180 5154</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.42185 93255 2154</td>
<td></td>
</tr>
<tr>
<td>0.9920</td>
<td>0.42177 56411 51354</td>
<td></td>
</tr>
</tbody>
</table>
NumGfun

http://algo.inria.fr/libraries/ (GNU LGPL)

http://algo.inria.fr/libraries/papers/gfun.html

arctan \(z \)

\[
(1 + z^2) y''(z) + 2z y'(z) = 0,
\]
\[
y(0) = 0, \quad y'(0) = 1
\]
Numerical Analytic Continuation

\[
\begin{align*}
\left[y(z_1) \right] & = \left[\frac{1}{4} (1 + \frac{5}{4} i) \right] \\
\left[y(0) \right] & = \left[\frac{1}{4}(1 - \frac{5}{4} i) \right]
\end{align*}
\]
Numerical Analytic Continuation

\[
\begin{bmatrix}
 y(z_1) \\
 y'(z_1)
\end{bmatrix} =
\begin{bmatrix}
 1 & 0.5705170238 \cdots + 0.2200896807 \cdots i \\
 0 & 0.7288378766 \cdots - 0.2065997130 \cdots i
\end{bmatrix}
\begin{bmatrix}
 y(0) \\
 y'(0)
\end{bmatrix}
\]
Numerical Analytic Continuation

\[
\begin{bmatrix}
y(z_1) \\
y'(z_1)
\end{bmatrix} =
\begin{bmatrix}
1 & 0.5705170238 \cdots + 0.2200896807 \cdots i \\
0 & 0.7288378766 \cdots - 0.2065997130 \cdots i
\end{bmatrix}
\begin{bmatrix}
y(0) \\
y'(0)
\end{bmatrix}
\]
Numerical Analytic Continuation

\[
\begin{bmatrix}
y(z_1) \\
y'(z_1) \\
y(z_2) \\
y'(z_2)
\end{bmatrix} =
\begin{bmatrix}
1 & 0,5705170238 \cdots + 0,2200896807 \cdots i \\
0 & 0,7288378766 \cdots - 0,2065997130 \cdots i \\
1 & 0,3656231471 \cdots + 0,3290407483 \cdots i \\
0 & 0,7515011402 \cdots - 0,0792619810 \cdots i
\end{bmatrix}
\begin{bmatrix}
y(0) \\
y'(0) \\
y(z_1) \\
y'(z_1)
\end{bmatrix}
\]
Numerical Analytic Continuation

\[
\begin{bmatrix}
y(z_1) \\
y'(z_1) \\
y(z_2) \\
y'(z_2)
\end{bmatrix} = \begin{bmatrix} 1 & 0.5705170238 \cdots + 0.2200896807 \cdots i \\
0 & 0.7288378766 \cdots - 0.2065997130 \cdots i \\
1 & 0.3656231471 \cdots + 0.3290407483 \cdots i \\
0 & 0.7515011402 \cdots - 0.0792619810 \cdots i
\end{bmatrix} \begin{bmatrix} y(0) \\
y'(0) \\
y(z_1) \\
y'(z_1)
\end{bmatrix}
\]
Regular Singular Points

$$z^2 y''(z) + z y'(z) + (z^2 - \nu^2) y(z)$$

0 singular point

regular singular

irregular singular

for any solution y,
$$\exists N \text{ s.t. } y(z) = O\left(\frac{1}{|z|^N}\right)$$
as $z \to 0$

Ex.: $y(z) = z^{\sqrt{2}}, y(z) = \frac{\log z}{z}$

non-poly. growth (w.r.t. $1/|z|$) possible

as $z \to 0$

Ex.: $y(z) = e^{1/z}$

Marc Mezzarobba (RISC, JKU Linz) Numerical Evaluation of D-Finite Functions
Solutions at Regular Singular Points

Theorem [Fuchs, 1866]

Assume 0 is a regular singular point of an ODE with meromorphic coefficients. Then, on some neighborhood D of 0, there exists a basis of solutions of the form

$$z^\lambda (y_0(z) + y_1(z) \log z + \cdots + y_t(z) \log^t z), \quad z \in D \setminus \{0\}$$

where $\lambda \in \bar{\mathbb{Q}}$ and the y_i are **analytic** on D.

Marc Mezzarobba (RISC, JKU Linz) Numerical Evaluation of D-Finite Functions
Asymptotics of Linear Recurrence Sequences

This is AsyRec, A Maple package accompanying Doron Zeilberger's article:

It finds the asymptotics of solutions of (homog.) linear recurrence equations with polynomial coefficients, using the Birkhoff-Trjitzinsky method.

\[recop := (n+2)^2N^2-(7n^2+21n+16)N-8(n+1)^2; \]

\[\text{AsyC}(recop, n, N, 5, [2, 10], 1000); \]

\[8^n \left(1 - \frac{1}{3n} + \frac{1}{27n^2} + \frac{1}{81n^3} + \frac{1}{243n^4} + \frac{11}{2187n^5} \right) \]

Singularity Analysis

[Flajolet, Odlyzko]

Principle

asymptotic behaviour of \(y(z) = \sum_{n} y_n z^n \) at its singularities

mechanical transfer

asymptotic behaviour of \((y_n) \) at infinity

- Constants by singularity analysis
 + numerical analytic continuation
 [Flajolet & Puech 1986]
Outlook
D-Finite Functions in Sage

What is there
- Nothing right now
- Arithmetic of diff. operators via PLURAL’s G-algebras

Main goals
Modern versions of the main features of
- gfun
- Mgfun
- NumGfun
- (part of) DEtools
- ...

A more ambitious goal
D-Finite functions as “first-class citizens”
Use them to implement special functions
(Cf. DDMF)
Developments Planned or in Progress (that I know of)

- Fredrik Johansson, Manuel Kauers, Maximilian Jaroschek
 ore_algebra 0.1 released two days ago!
 Ore operators, closure properties, guessing. . .

- ANR Magnum
 tools for analytic combinatorics project(?)

- Matthieu Dien, Marguerite Zamansky
 multivariate lazy power series prototype

- Eviatar Bach (mentored by Burcin Erocal and Flavia Stan)
 special functions, in part via D-finiteness GSOC project
Beyond NumGfun

Why Maple?

Historical reasons...
It was a pain.

Current plans

- C/C++ library
- basic analytic continuation code in arb (with Fredrik Johansson)
- Sage interface?
Wishlist

<table>
<thead>
<tr>
<th>Feature</th>
<th>Maple</th>
<th>Sage</th>
</tr>
</thead>
<tbody>
<tr>
<td>a compiled language</td>
<td>✗</td>
<td>limited</td>
</tr>
<tr>
<td>a type system</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>sane semantics</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>differential operators, D-finite funs</td>
<td>✓</td>
<td>soon?</td>
</tr>
<tr>
<td>floating-point, interval arithmetic</td>
<td>minimal</td>
<td>✓</td>
</tr>
<tr>
<td>algebraic numbers</td>
<td>limited</td>
<td>✓ (?)</td>
</tr>
<tr>
<td>symbolic special functions, branch cuts...</td>
<td>✓</td>
<td>minimal</td>
</tr>
<tr>
<td>asymptotics</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>ability to fix/extend the system!</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Marc Mezzarobba (RISC, JKU Linz) Numerical Evaluation of D-Finite Functions
Making Numerics Reliable

Real/complex mid-rad interval arithmetic, aka ball arithmetic

$$(3.14159265358979323846264338328, \quad 2 \cdot 10^{-30})$$

- multiple-precision floating-point number
- machine precision (rel?) error bound

- Make balls the **default** for RR, CC?
- ...in a backward-compatible way?
- Functions that do not provide guaranteed results would still be allowed to return (accurate-in-practice result, ∞)
d) Measure the width of the vacuum
There is a notch in the aluminum block
measure the width (width).
Evaluation Algorithm

[Chudnovsky & Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting
2 analytic continuation
3 bit burst

2. Taylor series method for ODEs

\[\arctan\left(\frac{5}{4}(1 + i)\right) = ? \]
Main Ideas

0. Fast integer multiplication
1. Binary splitting
2. Analytic continuation
3. Bit burst

2. Taylor series method for ODEs

\[
\begin{align*}
\arctan\left(\frac{5}{4}(1+i)\right) &= ? \\
\begin{bmatrix} y'(z_1) \\ y(z_1) \end{bmatrix} &= \begin{bmatrix} 1 & 0.570...+0.220...i \\ 0 & 0.728...-0.206...i \end{bmatrix} \begin{bmatrix} y'(0) \\ y(0) \end{bmatrix}
\end{align*}
\]
Evaluation Algorithm

[Chudnovsky & Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting
2 analytic continuation
3 bit burst

2. Taylor series method for ODEs

\[
\arctan\left(\frac{5}{4}(1+i)\right) = ?
\]

\[
\begin{bmatrix}
 y(z_1) \\
 y'(z_1)
\end{bmatrix} =
\begin{bmatrix}
 1 & 0.570...+0.220...i \\
 0 & 0.728...-0.206...i
\end{bmatrix}
\begin{bmatrix}
 y(0) \\
 y'(0)
\end{bmatrix}
\]
Evaluation Algorithm

Main Ideas

0 fast integer multiplication
1 binary splitting
2 analytic continuation
3 bit burst

2. Taylor series method for ODEs

\[\text{arctan} \left(\frac{5}{4} (1 + i) \right) = ? \]

\[
\begin{bmatrix}
y(z_1)
y'(z_1)
\end{bmatrix}
= \begin{bmatrix}
1 & 0.570... + 0.220... i \\
0 & 0.728... - 0.206... i
\end{bmatrix}
\begin{bmatrix}
y(0)
y'(0)
\end{bmatrix}
\]

\[
\begin{bmatrix}
y(z_2)
y'(z_2)
\end{bmatrix}
= \begin{bmatrix}
1 & 0.365... + 0.329... i \\
0 & 0.751... - 0.079... i
\end{bmatrix}
\begin{bmatrix}
y(z_1)
y'(z_1)
\end{bmatrix}
\]
Evaluation Algorithm

[Chudnovsky & Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting
2 analytic continuation
3 bit burst

2. Taylor series method for ODEs

\[\text{arctan} \left(\frac{5}{4} (1 + i) \right) = ? \]

\[
\begin{bmatrix}
 y(z_1) \\
 y'(z_1)
\end{bmatrix}
=
\begin{bmatrix}
 1 & 0,570...+0,220...i \\
 0 & 0,728...-0,206...i
\end{bmatrix}
\begin{bmatrix}
 y(0) \\
 y'(0)
\end{bmatrix}
\]

\[
\begin{bmatrix}
 y(z_2) \\
 y'(z_2)
\end{bmatrix}
=
\begin{bmatrix}
 1 & 0,365...+0,329...i \\
 0 & 0,751...-0,079...i
\end{bmatrix}
\begin{bmatrix}
 y(z_1) \\
 y'(z_1)
\end{bmatrix}
\]

\[\ldots \]
Evaluation Algorithm

[Chudnovsky & Chudnovsky 1988]

Main Ideas

0. fast integer multiplication
1. binary splitting
2. analytic continuation
3. bit burst

0. One can multiply two integers of \(\leq n \) bits in
\[M(n) = O(n \log n 2^{O(\log^* n)}) \] bit ops [Fürer 2007].
Evaluation Algorithm

[Chudnovsky & Chudnovsky 1988]

Main Ideas

- 0. fast integer multiplication
- 1. binary splitting
- 2. analytic continuation
- 3. bit burst

1. Within the disk of convergence of a Taylor expansion:
 fast series summation algorithm based on the recurrence

\[
O(N \log N)
\]

Marc Mezzarobba (RISC, JKU Linz) Numerical Evaluation of D-Finite Functions
Evaluation Algorithm

[Chudnovsky & Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting
2 analytic continuation
3 bit burst

3. High-precision inputs:
 use analytic continuation even if the series converges!

\[z_0 = 10_2 \rightarrow z_1 = 10,1_2 \]
\[\rightarrow z_2 = 10,101_2 \quad \sin(e) = \sin(2,718...) = ? \]
\[\rightarrow z_3 = 10,1011011_2 \]
\[\rightarrow z_4 = 10,101101110010100_2 \]
\[\rightarrow \ldots \]
\[\rightarrow z = 10.101101110010100110000\ldots\ldots_2 \approx e \]
Evaluation Algorithm

[Chudnovsky & Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting
2 analytic continuation
3 bit burst

Theorem

[(Chudnovsky², van der Hoeven, M.)]

The evaluation point z being fixed, one may compute $y(z)$ with error bounded by 2^{-n} in

$$O\left(M(n \cdot (\log n)^2)\right)$$

bit operations using $O(n)$ bits of memory.
Error Bounds

\[\sum_{n=0}^{\infty} y_n z^n = \sum_{n=0}^{N-1} y_n z^n + \sum_{n=N}^{\infty} y_n z^n \]

Compute suitable truncation orders (and other bounds)?

A priori bounds tend to be easier to use in fast algorithms.
Bounds

van der Hoeven, M. & Salvy

Idea: Replace y, by a simpler function that “dominates” it.

Bound Parameters

$\kappa, \alpha, \ldots \in \mathbb{Q}$ or $\bar{\mathbb{Q}}$ s.t.

$$|y_n| \leq n!^\kappa \cdot \alpha^n \cdot \varphi(n)$$

Main Tools:
Cauchy majorants
Saddle-point method

Symbolic Bounds

- Human-Readable
 (as far as possible!)
- Asymptotically tight

Numeric Bounds

- Conservative approx.
 of parameters
- Faster (no algebraic numbers)
Credits

The following images were used in this document:

- [Link](http://commons.wikimedia.org/wiki/File:2011-06-14_10-25-33_Austria_Niederösterreich_Mannsdorf_an_der_Donau.jpg) (by Hansueli Krapf, Creative Commons Attribution-Share Alike 3.0 Unported)

- [Link](http://commons.wikimedia.org/wiki/File:Calipers_in_physics_lab.jpg) (by User:Falcorian, Creative Commons Attribution-Share Alike)

Public Domain Dedication

To the extent possible under law, Marc Mezzarobba has waived all copyright and related or neighboring rights to the rest of the present document *Numerical Evaluation of D-Finite Functions: NumGfun and Beyond*. This work is published from: France.