Evaluation of $A_i(x)$ with Reduced Cancellation

Sylvain Chevillard, Marc Mezzarobba
Inria, France

ARITH 21, Austin, Texas
April 10, 2013
The Airy Function $\text{Ai}(x)$

\[\text{Ai}''(x) = x \, \text{Ai}(x) \]

\[\text{Ai}(0) = \frac{1}{3^{2/3} \Gamma(2/3)} \quad \text{Ai}'(0) = -\frac{1}{3^{1/3} \Gamma(1/3)} \]
Multiple-Precision Evaluation for $x > 0$

Standard Approach

“Small” x:
- Taylor Series at 0
- Catastrophic cancellation for moderately large x
- Need $p_{\text{work}} \gg p_{\text{res}}$

“Large” x:
- Asymptotic Expansion at ∞

This talk

New evaluation algorithm for “small” x with $p_{\text{work}} \approx p_{\text{res}}$
Complete error analysis
Catastrophic Cancellation

\[\text{lost digits} \approx \log \left(\max |y_n x^n| \right) - \log |y(x)| \]

\[\text{Ai}(x) = A - B x + \frac{A}{6} x^3 - \frac{B}{12} x^4 + \frac{A}{180} x^6 - \frac{B}{504} x^7 + \frac{A}{12960} x^9 - \ldots \]
Another Example
The Error Function

\[
erf(x) = \frac{2}{\sqrt{\pi}} \left(x - \frac{1}{3} x^3 + \frac{1}{10} x^5 - \frac{1}{42} x^7 + \frac{1}{216} x^9 - \ldots \right)
\]

catastrophic cancellation

Marc Mezzarobba (Inria) Evaluation of Ai(x) with Reduced Cancellation
Algorithm

1. Compute \[\sum_{n=0}^{\infty} \frac{2^n x^{2n+1}}{1 \cdot 3 \ldots (2n+1)} \] positive terms, no cancellation
2. Compute \(\exp(x^2) \)
3. Divide
Where does this formula come from?
The Gawronski-Müller-Reinhard Method

Or: How Complex Analysis “explains” the previous trick

Idea: Find F and G such that

1. $y(x) = \frac{G(x)}{F(x)}$

2. F and G computable with little cancellation

Marc Mezzarobba (Inria) Evaluation of $Ai(x)$ with Reduced Cancellation
Asymptotics

\[\text{Ai}(z) \sim \frac{\exp\left(-\frac{2}{3}z^{3/2}\right)}{2\sqrt{\pi}z^{1/4}} \]

as \(z \to \infty \)

in any sector

\(\{z \in \mathbb{C} | -\varphi < \arg z < \varphi\} \)

with \(\varphi > 0 \)
Asymptotics

\[|\text{Ai}(re^{i\theta})| \approx \exp(h(\theta) r^\rho) \]
for large \(r \)

\[\text{Ai}(z) \sim \frac{\exp\left(-\frac{2}{3} z^{3/2}\right)}{2 \sqrt{\pi} z^{1/4}} \]

Order \(\rho = 3/2 \)

Indicator \(h(\theta) = -\frac{2}{3} \cos \frac{3 \theta}{2} \)
Lost in Cancellation

\[
\text{lost digits} \approx \log \left(\max_n |y_n(r e^{i\theta})^n| \right) - \log |y(r e^{i\theta})| \approx r^\rho \left(\max h - h(\theta) \right)
\]
The GMR Method

\[
\begin{align*}
|F(z)| & \approx \exp(h_F(\theta) \cdot r^\rho) \\
|G(z)| & \approx \exp(h_G(\theta) \cdot r^\rho)
\end{align*}
\Rightarrow
\left| \frac{G(z)}{F(z)} \right| \approx \exp \left(\frac{(h_G(\theta) - h_F(\theta)) \cdot r^\rho}{h_{G/F}(\theta)} \right)
\]

Idea (refined): look for
- an auxiliary series \(F \),
- a modified series \(G = y \cdot F \),
both of order \(\rho \),
such that \(h_F \) and \(h_G \) \(\approx \) their max for \(\theta = 0 \)
Indicators

\[F(x) = \text{Ai}(j x) \text{Ai}(j^{-1} x) \]
\[G(x) = \text{Ai}(x) \text{Ai}(j x) \text{Ai}(j^{-1} x) \]
How do we evaluate the auxiliary series?
A function y is **D-finite** (holonomic) when it satisfies a linear ODE with polynomial coefficients.

Examples: $\text{Ai}(x)$, $\exp(x)$, $\text{erf}(x)$…

If $f(x)$, $g(x)$ are D-finite, then:

- $f(x) + g(x)$ and $f(x) \cdot g(x)$ too

 $$F(x) = \text{Ai}(jx) \cdot \text{Ai}(j^{-1}x)$$

 $$F'''(x) = 4x F'(x) + 2 F(x)$$

- The **Taylor coefficients** of $f(x)$ obey a linear recurrence relation with polynomial coefficients

 $$F(x) = \sum_{n=0}^{\infty} F_n x^n$$

 $$F_{n+3} = \frac{2(2n+1)(n+2)(n+3)}{(n+1)(n+2)(n+3)} F_n$$
The Auxiliary Series $F(x)$

D-Finiteness

\[F_{n+3} = \frac{2 (2n + 1)}{(n+1)(n+2)(n+3)} F_n \]

\[F_0 = \frac{1}{3^{4/3} \Gamma\left(\frac{2}{3}\right)^2} \quad F_1 = \frac{1}{2 \sqrt{3} \pi} \quad F_2 = \frac{1}{3^{2/3} \Gamma\left(\frac{1}{3}\right)^2} \]

- Two-term recurrence \Rightarrow Easy to evaluate
- Obviously $F_n > 0$ \Rightarrow Minimal cancellation
The Modified Series $G(x)$

\[G(x) = \text{Ai}(x) \ F(x) = \sum_{n=0}^{\infty} G_n \ x^{3n} \]

D-Finiteness

\[G_{n+2} = \frac{10 (n+1)^2 G_{n+1} - G_n}{(n+1)(n+2)(3n+4)(3n+5)} \]

\[G_0 = \frac{1}{9 \Gamma\left(\frac{2}{3}\right)^3} \quad G_1 = \frac{1}{18 \Gamma\left(\frac{2}{3}\right)^3} - \frac{1}{3 \Gamma\left(\frac{1}{3}\right)^3} \]

\[G(x) = 0.44749 \cdot 10^{-1} + 0.50371 \cdot 10^{-2} x^3 + 0.14053 \cdot 10^{-3} x^6 \]
\[\quad + 0.17388 \cdot 10^{-5} x^9 + 0.12091 \cdot 10^{-7} x^{12} + 0.53787 \cdot 10^{-10} x^{15} + \ldots \]

Observe that $G_n > 0$ (proof?)
The recursive computation of G_n is **unstable**

(G_n is a minimal solution of the recurrence)

The computation of the sum $\sum_{n=0}^{\infty} G_n x^n$ is stable (no cancellation)
Miller’s \textbf{backward recurrence} method allows one to compute minimal solutions in a numerically stable way

Final Algorithm

1. Compute error bounds, choose working precision \hfill (how?)
2. Compute $F(x)$ by direct recurrence
3. Compute $G(x)$ using Miller’s method
4. Divide

Numerically stable in practice \hfill (proof?)
I didn’t actually prove anything
Making the Analysis Rigorous

- Prove that \((G_n)\) is a minimal solution
 \[\Rightarrow\] Miller’s method works
- Prove that \(G_n \geq 0\)
 \[\Rightarrow\] no cancellation

Main issue:
need bounds on \(G_n\)

- Bound the tails of the series \(F\) and \(G\)
- Bound the roundoff errors in \(\sum F_n x^n\)
- Bound the method error of Miller’s algorithm
- Bound additional roundoff errors due to Miller’s method [M&vdS 1976]

R.M.M. Matthiej & A. van der Sluis, Numerische Mathematik, 1976
Controlling G_n

Main Technical Lemma

$G_n \sim \gamma_n = \frac{1}{4 \sqrt{3} \pi 9^n n!^2}$ with $\left| \frac{G_n}{\gamma_n} - 1 \right| \leq 2.4 n^{-1/4}$ for all $n \geq 1$

Corollary: $G_n > 0$ (for large n, then for all n)

Idea of the proof

- $G_n = \frac{1}{2 \pi i} \oint \frac{G(z)}{z^{3n+1}} \, dz$
- saddle-point method
- $\text{Ai}(z) \sim \frac{e^{-2/3 z^{3/2}}}{2 \sqrt{\pi} z^{1/4}} + \text{error bound}$
Conclusion

Summary

- New well-conditioned formula for $A_i(x)$, obtained by an extension of the GMR method
- Rigorous error analysis on this example
- Ready-to-use multiple-precision algorithm for $A_i(x)$

implementation & suppl. material at http://hal.inria.fr/hal-00767085

Next question: How much of this is specific to $A_i(x)$?

- Entire function
- Ability to find auxiliary series
- D-finiteness [constraints on the order of the recurrences?]
- Asymptotic estimate with error bound
This document uses

- the image http://commons.wikimedia.org/wiki/File:AiryAi_Abs_Surface.png from Wikimedia Commons, by User:Inductiveload, placed in the public domain;
- the image http://www.flickr.com/photos/panr/4410697542/, by Robert Cutts, distributed under a Creative Commons Attribution 2.0 licence (http://creativecommons.org/licenses/by/2.0/);
- icons from the Oxygen icon set (http://www.oxygen-icons.org/), distributed under the Creative Commons Attribution-ShareAlike 3.0 license (http://creativecommons.org/licenses/by-sa/3.0/).

To the extent possible under law, Marc Mezzarobba has waived all copyright and related or neighboring rights to the rest of the present document Evaluation of Ai(x) with Reduced Cancellation. This work is published from: France.