MPRI C-2-22 — Lecture 15

Solutions of linear differential equations

Marc Mezzarobba

February 3, 2025

In this lecture, **K** is an effective field of characteristic zero.

Problem. Given a differential equation

$$a_r(x) y^{(r)} + \cdots + a_1(x) y'(x) + a_0(x) y(x) = 0, \qquad a_i \in \mathbb{K}[x],$$

(or a system Y'(x) = A(x) Y(x)), compute its...

- a) formal series solutions $y \in \mathbb{K}[[x]]$,
- b) polynomial solutions $y \in \mathbb{K}[x]$,
- c) rational solutions $y \in \mathbb{K}(x)$,
- d) generalized series solutions,
- e) hyperexponential solutions.

Operator notation:

$$a_r(x) y^{(r)} + \dots + a_1(x) y'(x) + a_0(x) y(x) = 0 \Leftrightarrow (a_r(x) D^r + \dots + a_1(x) D + 1)(y) = 0$$

1 Differential opearators as skew polynomials

Differential operators as skew polynomials

Algebraic framework for working with operators $f \mapsto (x \mapsto \sum_i a_i(x) f^{(i)}(x))$

Definition.

$$\mathbb{K}(\mathbf{x})\langle \mathbf{D}\rangle = \left\{ \sum_{i=0}^{r} a_i(\mathbf{x}) \, \mathbf{D}^i \quad \middle| \begin{array}{c} r \in \mathbb{N}, \\ a_i \in \mathbb{K}(\mathbf{x}) \end{array} \right\}$$

with the usual addition of polynomials, multiplication defined by $D \cdot x = x \cdot D + 1$ and linearity.

Alt.: $A/(A\langle Dx - xD - 1\rangle A)$ where $A = \text{ring of noncommutative polynomials in } D \text{ over } \mathbb{K}(x)$.

Exercise.

- Compute D (x D 1)
- Interpret in terms of the solutions of y' = 0, xy' = y, and y'' = 0

• Euclidean right division:

$$L = Q P + R$$
 with $order(R) < order(P)$

[Ore 1933, ...]

• Euclidean right division:

$$L = \underset{}{Q} \ P + \underset{}{R} \qquad \text{with } \operatorname{order}(R) < \operatorname{order}(P)$$

• Greatest common right divisor:

$$(\leftrightarrow \text{common solutions})$$

$$\begin{cases} L_1 = Q_1 G \\ L_2 = Q_2 G \end{cases}$$
 with G of max order

• Least common left multiple:

$$(\leftrightarrow closure\ by\ sum)$$

$$U_1 L_1 = U_2 L_2 = M$$
 of min order

• Euclidean right division:

$$L = Q P + R$$
 with $order(R) < order(P)$

• Greatest common right divisor:

$$(\leftrightarrow \text{common solutions})$$

$$\begin{cases} L_1 = Q_1 G \\ L_2 = Q_2 G \end{cases}$$
 with G of max order

Least common left multiple:

$$(\leftrightarrow closure by sum)$$

$$U_1 L_1 = U_2 L_2 = M$$
 of min order

• Non-commutative Euclidean algorithm

[Ore 1933, ...]

• Euclidean right division:

$$L = Q P + R$$
 with $order(R) < order(P)$

• Greatest common right divisor:

 $(\leftrightarrow \text{common solutions})$

$$\begin{cases} L_1 = Q_1 G \\ L_2 = Q_2 G \end{cases}$$
 with G of max order

• Least common left multiple:

 $(\leftrightarrow closure\ by\ sum)$

$$U_1 L_1 = U_2 L_2 = M$$
 of min order

- Non-commutative Euclidean algorithm
- Annihilating (left) ideal:

$$\begin{aligned} &\operatorname{Ann}(f) = \{L \mid L(f) = 0\} \\ &= \mathbb{K}(x) \langle D \rangle \, G \quad \text{where } G = \text{minimal annihilator of } f \end{aligned}$$

Recurrence operators as skew polynomials

Definition.

$$\mathbb{K}(\mathbf{n})\langle \mathbf{S}\rangle = \left\{ \sum_{i=0}^{s} b_i(\mathbf{n}) \, \mathbf{S}^i \quad \middle| \quad \begin{array}{c} s \in \mathbb{N}, \\ b_i \in \mathbb{K}(\mathbf{n}) \end{array} \right\}$$

with the usual addition of polynomials, multiplication defined by $S \cdot n = (n+1) \cdot S$ and linearity.

Also a skew Euclidean ring

Recurrence operators as skew polynomials

Definition.

$$\mathbb{K}(\mathbf{n})\langle \mathbf{S}\rangle = \left\{ \sum_{i=0}^{s} b_i(\mathbf{n}) \, \mathbf{S}^i \quad \middle| \quad \begin{array}{c} s \in \mathbb{N}, \\ b_i \in \mathbb{K}(\mathbf{n}) \end{array} \right\}$$

with the usual addition of polynomials, multiplication defined by $S \cdot n = (n+1) \cdot S$ and linearity.

- Also a skew Euclidean ring
- Diff. eq. ↔ rec. correspondance:

$$\mathbb{K}[x,x^{-1}]\langle D\rangle \ \cong \ \mathbb{K}[n]\langle S,S^{-1}\rangle \ \text{by} \begin{cases} x\mapsto S^{-1} \\ D\mapsto (n+1)\,S. \end{cases}$$

Recurrence operators as skew polynomials

Definition.

$$\mathbb{K}(\mathbf{n})\langle \mathbf{S}\rangle = \left\{ \sum_{i=0}^{s} b_i(\mathbf{n}) \, \mathbf{S}^i \quad \middle| \quad \begin{array}{c} s \in \mathbb{N}, \\ b_i \in \mathbb{K}(\mathbf{n}) \end{array} \right\}$$

with the usual addition of polynomials, multiplication defined by $S \cdot n = (n+1) \cdot S$ and linearity.

- Also a skew Euclidean ring
- Diff. eq. ↔ rec. correspondance:

$$\mathbb{K}[x,x^{-1}]\langle D\rangle \ \cong \ \mathbb{K}[n]\langle S,S^{-1}\rangle \ \text{by} \begin{cases} x\mapsto S^{-1} \\ D\mapsto (n+1)\,S. \end{cases}$$

2 Power series solutions

Singular points

$$L = \alpha_r \, D^r + \dots + \alpha_1 \, D + \alpha_0$$

Definition. A point $\xi \in \mathbb{K}$ is called

- an ordinary point of L if $a_r(\xi) \neq 0$,
- a singular point of L otherwise.

Singular points

$$L = a_r D^r + \dots + a_1 D + a_0$$

Definition. A point $\xi \in \mathbb{K}$ is called

- an ordinary point of L if $a_r(\xi) \neq 0$,
- a singular point of L otherwise.

Theorem. If $\mathbb{K} = \mathbb{C}$ and ξ is an ordinary point, the space of analytic solutions at ξ has dimension r and any solution y is characterized by initial values $y(\xi), \dots, y^{(r-1)}(\xi)$.

Corollary. If $\mathbb{K} = \mathbb{C}$ and 0 is an ordinary point, r linearly independent solutions in $\mathbb{C}[[x]]$. (computable using the associated recurrence)

Singular points

$$L = a_r D^r + \dots + a_1 D + a_0$$

Definition. A point $\xi \in \mathbb{K}$ is called

- an **ordinary point** of L if $a_r(\xi) \neq 0$,
- a singular point of L otherwise.

Theorem. If $\mathbb{K} = \mathbb{C}$ and ξ is an ordinary point, the space of analytic solutions at ξ has dimension r and any solution y is characterized by initial values $y(\xi), \dots, y^{(r-1)}(\xi)$.

Corollary. If $\mathbb{K} = \mathbb{C}$ and 0 is an ordinary point, r linearly independent solutions in $\mathbb{C}[[x]]$. (computable using the associated recurrence)

Question. Compute a basis of solutions in $\mathbb{K}[[x]]$ or $\mathbb{K}((x))$ (Laurent series)

- even when 0 is a singular point,
- for general \mathbb{K} with char $\mathbb{K} = 0$

Formal Laurent series

Definition. We denote

$$\mathbb{K}((x)) = \bigcup_{n_0 \in \mathbb{Z}} \left\{ \sum_{n \geqslant n_0} u_n x^n \, \middle| \, u_n \in \mathbb{K} \right\}.$$

The elements of $\mathbb{K}((x))$ are called **formal Laurent series**.

- Warning: $\mathbb{C}((x)) \neq \text{Laurent series from analysis (even when convergent)}$. In complex analysis, Laurent series are double-sided: $\sum_{n \in \mathbb{Z}} u_n x^n$. But formal double-sided series do not form a ring!
- $\mathbb{K}((x))$ is the field of fractions of $\mathbb{K}[[x]]$.
- Rational functions in $\mathbb{K}(x)$ can be expanded in formal Laurent series at any point of \mathbb{K} .

The Euler derivative

Lemma. Let $\theta = x D$.

Any differential operator

$$L = a_r(x) D^r + \dots + a_1(x) D + a_0(x) \in \mathbb{K}[x]\langle D \rangle$$

can be written

$$L = x^{-k} [\underbrace{\tilde{a}_r(x) \, \theta^r + \dots + \tilde{a}_1(x) \, \theta + \tilde{a}_0(x)}_{}], \quad \tilde{a}_i \in \mathbb{K}[x]$$

for some $k \in \mathbb{N}$.

Proof. Substitute $x^{-1}\theta$ for D and clear denominators.

(Alternatively, perform repeated right Euclidean divisions by $\boldsymbol{\theta}$.)

Remark. L and \tilde{L} have the same solutions.

Laurent series solutions and recurrences

For
$$y \in \mathbb{K}((x))$$
, define $(y_n)_{n \in \mathbb{Z}}$ by $y(x) = \sum_{n \in \mathbb{Z}} y_n x^n$.

(Thus $y_n = 0$ for $n \ll 0$.)

Proposition. Let $\theta = x$ D. The series $y \in \mathbb{K}((x))$ is solution to

$$[\theta \colon y(x) \mapsto x \, y'(x)]$$

$$\tilde{\alpha}_r(x) \theta^r + \cdots + \tilde{\alpha}_1(x) \theta + \tilde{\alpha}_0(x)$$

if and only if the sequence $(y_n)_{n\in\mathbb{Z}}$ is solution to

$$[S^{-1}{:}\,(u_n)_{n\,\in\mathbb{Z}}\,{\mapsto}\,(u_{n\,-1})_{n\,\in\mathbb{Z}}]$$

$$R = \tilde{a}_r(S^{-1}) n^r + \cdots + \tilde{a}_1(S^{-1}) n + \tilde{a}_0(S^{-1}).$$

Proof. Substitute and compare coefficients.

Notation. Given R as above, we write

$$S^{\delta} R = q_0(n) - q_1(n) S^{-1} - \cdots - q_s(n) S^{-s}$$

with $\delta \in \mathbb{Z}$ chosen so that $q_0 \not\equiv 0$.

$$\forall n \in \mathbb{Z}, \quad q_0(n) \, y_n - q_1(n) \, y_{n-1} - \dots - q_s(n) \, y_{n-s} = 0$$

$$\forall n \in \mathbb{Z}, \quad q_0(n) y_n - q_1(n) y_{n-1} - \dots - q_s(n) y_{n-s} = 0$$

At a singular index (= root of q_0):

```
\begin{cases} \vdots \\ q_0(n-2)y_{n-2} &= q_1(n-2)y_{n-3} + \dots + q_s(n-2)y_{n-2-s} \\ q_0(n-1)y_{n-1} &= q_1(n-1)y_{n-2} + \dots + q_s(n-1)y_{n-1-s} \\ 0y_n &= q_1(n) \quad y_{n-1} + \dots + q_s(n) \quad y_{n-s} \\ q_0(n+1)y_{n+1} &= q_1(n+1)y_n \quad + \dots + q_s(n+1)y_{n+1-s} \\ q_0(n+2)y_{n+2} &= q_1(n+2)y_{n+1} + \dots + q_s(n+2)y_{n+2-s} \\ \vdots \end{cases}
```

$$\forall n \in \mathbb{Z}, \quad q_0(n) y_n - q_1(n) y_{n-1} - \dots - q_s(n) y_{n-s} = 0$$

At a singular index (= root of q_0):

```
\begin{cases} \vdots \\ q_0(n-2)\,y_{n-2} &= \,q_1(n-2)\,y_{n-3}+\dots+q_s(n-2)\,y_{n-2-s} \\ q_0(n-1)\,y_{n-1} &= \,q_1(n-1)\,y_{n-2}+\dots+q_s(n-1)\,y_{n-1-s} \\ 0\,y_n &= \,q_1(n) \quad y_{n-1}+\dots+q_s(n) \quad y_{n-s} \\ q_0(n+1)\,y_{n+1} &= \,q_1(n+1)\,y_n \quad +\dots+q_s(n+1)\,y_{n+1-s} \\ q_0(n+2)\,y_{n+2} &= \,q_1(n+2)\,y_{n+1}+\dots+q_s(n+2)\,y_{n+2-s} \\ \vdots \end{cases} \rightarrow \text{free choice of } y_n
```

$$\forall n \in \mathbb{Z}, \quad q_0(n) y_n - q_1(n) y_{n-1} - \dots - q_s(n) y_{n-s} = 0$$

At a singular index (= root of q_0):

```
\begin{cases} \vdots \\ q_0(n-2)\,y_{n-2} &= \,q_1(n-2)\,y_{n-3}+\dots+q_s(n-2)\,y_{n-2-s} \\ q_0(n-1)\,y_{n-1} &= \,q_1(n-1)\,y_{n-2}+\dots+q_s(n-1)\,y_{n-1-s} \\ 0\,y_n &= \,q_1(n) \quad y_{n-1}+\dots+q_s(n) \quad y_{n-s} \\ q_0(n+1)\,y_{n+1} &= \,q_1(n+1)\,y_n \quad +\dots+q_s(n+1)\,y_{n+1-s} \\ q_0(n+2)\,y_{n+2} &= \,q_1(n+2)\,y_{n+1}+\dots+q_s(n+2)\,y_{n+2-s} \\ \vdots \end{cases} \rightarrow \begin{array}{l} \text{free choice of }y_n \\ \rightarrow \quad \text{extra linear constraint} \\ \text{on } (y_{n-s},\dots,y_{n-1}) \end{array}
```

Observations.

- For a solution $(y_n)_{n \in \mathbb{Z}} = (\ldots, 0, 0, 0, y_N, y_{N+1}, y_{N+2}, \ldots)$ with $y_N \neq 0$ to exist, N must be a root of q_0 .
- A partial solution $(y_n)_{n \le N}$ with $N \ge \max \{ \text{roots of } q_0 \text{ in } \mathbb{Z} \}$ extends to a unique solution $(y_n)_{n \in \mathbb{Z}}$.

Lemma. Let $(y_n)_{n\in\mathbb{Z}}$ be a solution to

$$q_0(n) y_n = q_1(n) y_{n-1} + \cdots + q_s(n) y_{n-s}.$$

Assume that there exists an integer N such that $y_n = 0$ for all n < N.

Then the largest N with this property is a root of q_0 .

Exercise. Find the dimension of the space of solutions in $\mathbb{Q}^{\mathbb{Z}}$ of

$$(n-1)(n-2)u_n = u_{n-1} + (n-2)u_{n-2}$$

that are ultimately zero as $n \to -\infty$.

Exercise. Find the dimension of the space of solutions in $\mathbb{Q}^{\mathbb{Z}}$ of

$$(n-1)(n-2)u_n = u_{n-1} + (n-2)u_{n-2}$$

that are ultimately zero as $n \to -\infty$.

An exercise

Exercise. Find the dimension of the space of solutions in $\mathbb{Q}^{\mathbb{Z}}$ of

$$(n-1)(n-2)u_n = u_{n-1} + (n-2)u_{n-2}$$

that are ultimately zero as $n \to -\infty$.

Solution. The first nonzero term of such a solution must be u_1 or u_2 .

Evaluating the equation at n = 2 yields $u_1 = 0$.

In contrast, starting from any value of u_2 ,

one can define a solution with support $\subseteq \{2, 3, \dots\}$.

The dimension is 1.

(n=0) $2u_0 = u_{-1} - 2u_{-2}$

(n=1) $0 = u_0 - u_{-1}$ (n=2) 0 = u_1 + $0u_0$

(n=3) $2u_3 = u_2 + u_1$

An exercise

Exercise. Find the dimension of the space of solutions in $\mathbb{Q}^{\mathbb{Z}}$ of

$$(n-1)(n-2)u_n = u_{n-1} + (n-2)u_{n-2}$$

that are ultimately zero as $n \to -\infty$.

Solution. The first nonzero term of such a solution must be u_1 or u_2 .

Evaluating the equation at n = 2 yields $u_1 = 0$.

In contrast, starting from any value of u_2 , one can define a solution with support $\subseteq \{2, 3, \dots\}$.

The dimension is 1.

Remark. This is less than

- the order of the recurrence,
- the number of integer roots of q₀

(n=0) $2u_0 = u_{-1} - 2u_{-2}$

(n=1) $0 = u_0 - u_{-1}$ (n=2) $0 = u_1 + 0u_0$

(n=3) $2u_3 = u_2 + u_1$

An exercise

Exercise. Find the dimension of the space of solutions in $\mathbb{Q}^{\mathbb{Z}}$ of

$$(n-1)(n-2)u_n = u_{n-1} + (n-2)u_{n-2}$$

that are ultimately zero as $n \to -\infty$.

Solution. The first nonzero term of such a solution must be u_1 or u_2 .

Evaluating the equation at
$$n = 2$$
 yields $u_1 = 0$.

In contrast, starting from any value of u_2 ,

one can define a solution with support $\subseteq \{2, 3, \dots\}$.

The dimension is 1.

Remark. This is less than

- the order of the recurrence,
- ullet the number of integer roots of q_0

Remark. The dimension could also be larger than the order: consider

$$n(n-1)u_n = (n-1)u_{n-1}$$
.

Definition. The polynomial q_0 is called the **indicial polynomial** of L at 0. The polynomial obtained in the same way after $x \leftarrow \xi + x$ is called the indicial polynomial at ξ .

Proposition. The valuation of any solution $y \in \mathbb{K}((x))$ of L(y) = 0 is a root of the indicial polynomial at 0.

Definition. The polynomial q_0 is called the **indicial polynomial** of L at 0. The polynomial obtained in the same way after $x \leftarrow \xi + x$ is called the indicial polynomial at ξ .

Proposition. The valuation of any solution $y \in \mathbb{K}((x))$ of L(y) = 0 is a root of the indicial polynomial at 0.

Corollary. The space of solutions of L in $\mathbb{K}((x))$ has dimension $\leq r$.

- **Proof.** We can echelonize a basis so that its elements have distinct valuations.
 - $\deg_n(S n) = \deg_n((n+1) S)$ so $\deg_n(R) = r$, and in particular $\deg q_0 \le r$.

Definition. The polynomial q_0 is called the **indicial polynomial** of L at 0. The polynomial obtained in the same way after $x \leftarrow \xi + x$ is called the indicial polynomial at ξ .

Proposition. The valuation of any solution $y \in \mathbb{K}((x))$ of L(y) = 0 is a root of the indicial polynomial at 0.

Corollary. The space of solutions of L in $\mathbb{K}((x))$ has dimension $\leq r$.

- **Proof.** We can echelonize a basis so that its elements have distinct valuations.
 - $\deg_{\,n}(S\,n) = \deg_{\,n}((n+1)\,S)$ so $\deg_{\,n}(R) = r$, and in particular $\deg q_0 \leqslant r$.

Remark. deg q_0 can be < r, and the dimension can be < # integer roots of q_0

Definition. The polynomial q_0 is called the **indicial polynomial** of L at 0. The polynomial obtained in the same way after $x \leftarrow \xi + x$ is called the indicial polynomial at ξ .

Proposition. The valuation of any solution $y \in \mathbb{K}((x))$ of L(y) = 0 is a root of the indicial polynomial at 0.

Corollary. The space of solutions of L in $\mathbb{K}((x))$ has dimension $\leq r$.

- **Proof.** We can echelonize a basis so that its elements have distinct valuations.
 - $\deg_{\,n}(S\,n) = \deg_{\,n}((n+1)\,S)$ so $\deg_{\,n}(R) = r$, and in particular $\deg q_0 \leqslant r$.

Remark. deg q_0 can be < r, and the dimension can be < # integer roots of q_0

$$\begin{array}{lll} L = \tilde{\alpha}_r(x)\,\theta^r + \cdots + \tilde{\alpha}_0(x) & \rightarrow & R & = & \tilde{\alpha}_r(S^{-1})\,\pi^r + \cdots + \tilde{\alpha}_0(S^{-1}) \\ (\deg \tilde{\alpha}_i < d) & = & S^{-\delta}\left(q_0(n) - \cdots - q_s(n)\,S^{-s}\right) \end{array}$$

$$\begin{array}{lll} L = \tilde{\alpha}_r(x)\,\theta^r + \cdots + \tilde{\alpha}_0(x) & \rightarrow & R & = & \tilde{\alpha}_r(S^{-1})\,\pi^r + \cdots + \tilde{\alpha}_0(S^{-1}) \\ (\deg \tilde{\alpha}_i < d) & = & S^{-\delta}\left(q_0(n) - \cdots - q_s(n)\,S^{-s}\right) \end{array}$$

Idea. Let λ , μ be the smallest/largest root of q_0 in \mathbb{Z} .

• Make an ansatz $y(x) = y_{\lambda}x^{\lambda} + \cdots + y_{\mu}x^{\mu} + O(x^{\mu+1})$, plug into the equation:

• Solve the resulting linear system

For solutions in $\mathbb{K}[[x]]$: same but restrict λ , μ to \mathbb{N} .

$$\begin{array}{lll} L = \tilde{\alpha}_r(x) \, \theta^r + \cdots + \tilde{\alpha}_0(x) & \rightarrow & R & = & \tilde{\alpha}_r(S^{-1}) \, n^r + \cdots + \tilde{\alpha}_0(S^{-1}) \\ (\deg \tilde{\alpha}_i < d) & = & S^{-\delta} \left(q_0(n) - \cdots - q_s(n) \, S^{-s} \right) \end{array}$$

Idea. Let λ , μ be the smallest/largest root of q_0 in \mathbb{Z} .

• Make an ansatz $y(x) = y_{\lambda}x^{\lambda} + \cdots + y_{\mu}x^{\mu} + O(x^{\mu+1})$, plug into the equation:

$$L(y)(x) = \underbrace{[\ldots]}_{} x^{\lambda} + \underbrace{[\ldots]}_{} x^{\lambda+1} + \underbrace{[\ldots]}_{} x^{\mu+d-1} + \underbrace{O(x^{\mu+d})}_{}$$
 partial solutions are guaranteed to extend so as to make this zero

Solve the resulting linear system

For solutions in $\mathbb{K}[[x]]$: same but restrict λ , μ to \mathbb{N} .

$$\begin{array}{lll} L = \tilde{\alpha}_r(x) \, \theta^r + \cdots + \tilde{\alpha}_0(x) & \rightarrow & R & = & \tilde{\alpha}_r(S^{-1}) \, n^r + \cdots + \tilde{\alpha}_0(S^{-1}) \\ (\deg \tilde{\alpha}_i < d) & = & S^{-\delta} \left(q_0(n) - \cdots - q_s(n) \, S^{-s} \right) \end{array}$$

Idea. Let λ , μ be the smallest/largest root of q_0 in \mathbb{Z} .

• Make an ansatz $y(x) = y_{\lambda}x^{\lambda} + \cdots + y_{\mu}x^{\mu} + O(x^{\mu+1})$, plug into the equation:

$$L(y)(x) = \underbrace{[\ldots]}_{} x^{\lambda} + \underbrace{[\ldots]}_{} x^{\lambda+1} + \underbrace{[\ldots]}_{} x^{\mu+d-1} + \underbrace{O(x^{\mu+d})}_{}$$
 partial solutions are guaranteed to extend so as to make this zero

Solve the resulting linear system

For solutions in $\mathbb{K}[[x]]$: same but restrict λ , μ to \mathbb{N} .

Limitation. The dimension $\mu - \lambda + 1$ can be exponential in the bit size of the input. For example the solutions of $x^2y''(x) = 9999999 \times y'(x)$ are spanned by 1 and x^{10^6} .

 $m \leq diff. eq. order$

Computing formal series solutions by recurrence

- **Algorithm (sketch).** *Input*: L, N *Output*: a basis of $Sol(L, \mathbb{K}[[x]])$ to precision N
- 1. Convert L to a recurrence. Let q_0 be the indicial polynomial.
- 2. Let $\lambda_1 < \lambda_2 < \cdots < \lambda_m$ be the roots of q_0 in \mathbb{N} .
- 3. For $n = \lambda_1, \lambda_1 + 1, \dots, \max(N, \lambda_m)$: note the max
 - a. If $n = \lambda_k$ for some k:
 - i. Set u_n to a new indeterminate C_k .
 - ii. Evaluate the recurrence at n, record the resulting relation on previous C_k .
 - b. Otherwise compute u_n using the recurrence.
- 4. Solve the linear system on C_1, \ldots, C_m consisting of the collected relations.

Even better: use fast algorithms (baby steps-giant steps, binary splitting) to "jump" from one singular index to the next.

Remark: the Ck that remain free after solving play the role of generalized initial values

Remark. If 0 is an ordinary point, just like in the analytic case

- the space of power series solutions has dimension exactly r, and
- there exists a basis of solutions with valuations $0, 1, \dots, r-1$.

Remark. If 0 is an ordinary point, just like in the analytic case

- the space of power series solutions has dimension exactly r, and
- there exists a basis of solutions with valuations $0, 1, \dots, r-1$.

Proof sketch. One can check that the rec. obtained by $L(x,D) \leadsto \tilde{L}(x,\theta) \leadsto R(n,S^{-1})$ has the form

$$\begin{array}{lll} a_{r}(0) & \mathfrak{n}\,(n-1)\cdots(n-r+1) & u_{n} & = & & [\operatorname{poly}(n)] & (n-1)\cdots(n-r+1) & u_{n-1} \\ & + & [\operatorname{poly}(n)] & (n-2)\cdots(n-r+1) & u_{n-2} \\ & + & \cdots & & + & [\operatorname{poly}(n)] & (n-r+1) & u_{n-r+1} \\ & + & \cdots & & & + & \cdots \end{array}$$

Remark. If 0 is an ordinary point, just like in the analytic case

- the space of power series solutions has dimension exactly *r*, and
- there exists a basis of solutions with valuations $0, 1, \dots, r-1$.

Proof sketch. One can check that the rec. obtained by $L(x, D) \leadsto \tilde{L}(x, \theta) \leadsto R(n, S^{-1})$ has the form

$$\begin{array}{lll} a_{r}(0) & \mathfrak{n}\,(n-1)\cdots(n-r+1) & \mathfrak{u}_{n} & = & & [\operatorname{poly}(n)] & (n-1)\cdots(n-r+1) & \mathfrak{u}_{n-1} \\ & + & [\operatorname{poly}(n)] & (n-2)\cdots(n-r+1) & \mathfrak{u}_{n-2} \\ & + & \cdots & & \\ & + & [\operatorname{poly}(n)] & (n-r+1) & \mathfrak{u}_{n-r+1} \\ & + & \cdots & & \end{array}$$

• Since $a_r(0) \neq 0$, the indicial polynomial is $a_r(0)$ $n(n-1) \cdots (n-r+1)$. This shows that the only possible valuations are $0, \dots, r-1$.

Remark. If 0 is an ordinary point, just like in the analytic case

- the space of power series solutions has dimension exactly r, and
- there exists a basis of solutions with valuations $0, 1, \dots, r-1$.

Proof sketch. One can check that the rec. obtained by $L(x, D) \leadsto \tilde{L}(x, \theta) \leadsto R(n, S^{-1})$ has the form

$$\begin{array}{lll} a_{r}(0) & \mathfrak{n}\,(n-1)\cdots(n-r+1) & u_{n} & = & & [\operatorname{poly}(n)] & (n-1)\cdots(n-r+1) & u_{n-1} \\ & & + & [\operatorname{poly}(n)] & (n-2)\cdots(n-r+1) & u_{n-2} \\ & & + & \cdots \\ & & + & [\operatorname{poly}(n)] & (n-r+1) & u_{n-r+1} \\ & & + & \cdots \end{array}$$

- Since $a_r(0) \neq 0$, the indicial polynomial is $a_r(0)$ $n(n-1) \cdots (n-r+1)$. This shows that the only possible valuations are $0, \dots, r-1$.
 - All partial solutions $(y_0, ..., y_k)$ for $k \le r 1$ extend thanks to the shape of the rhs. \square

A paradox?

Remark.

L nonsingular of order r and deg d

 \longleftrightarrow

R of order $s \le r + d$ usually $s \ne r$

$$V = \operatorname{Sol}_{\mathbb{K}[[x]]}(L)$$

$$\dim V\!=\!r$$

A paradox?

Remark.

L nonsingular of order r and deg d

$$\longleftrightarrow$$

 $R \text{ of order } s \leqslant r + d$ $usually \text{ } s \neq r$

$$V = \operatorname{Sol}_{\mathbb{K}[[x]]}(L)$$

 \longleftrightarrow

$$W = \{ (y_n) \in \mathbb{K}^{\mathbb{Z}} \text{ with } y_n = 0 \text{ for } n < 0 \}$$

 $\dim V = r$

dim W unrelated to s
(but related to r via
the indicial polynomial)

3 Polynomial and rational solutions

$$a_r y^{(r)} + \dots + a_1(x) y' + a_0 y = 0$$

 $deg(a_i) < d$

Suppose we had a bound B on the degrees of polynomial solutions.

Make an ansatz: $y(x) = c_0 + c_1 x + \cdots + c_{D-1} x^{B-1}$, plug into the equation:

$$a_r(x) y^{(r)} + \dots + a_0(x) y(x) = \underbrace{[\dots]}_{} + \underbrace{[\dots]}_{} x + \underbrace{[\dots]}_{} x^{d+B-2}$$
linear expressions in c_0, \dots, c_{N-1}

 \longrightarrow B + d – 1 linear equations in B unknowns.

- **Questions.** Compute the degree bound
 - Do better than B^θ

Finite-support solutions of recurrences

A polynomial solution is just a power series solution that terminates a solution with finite support of the associated recurrence.

Lemma. Consider the recurrence

$$\forall n \in \mathbb{Z}, \quad b_s(n) y_{n+s} + \cdots + b_1(n) y_{n+1} + b_0(n) y_n = 0.$$

For a solution

$$(y_n)_{n \in \mathbb{Z}} = (\dots, y_{N-2}, y_{N-1}, y_N, 0, 0, 0, \dots)$$
 with $y_N \neq 0$

to exist, N must be a root of b_0 .

Finite-support solutions of recurrences

A polynomial solution is just a power series solution that terminates a solution with finite support of the associated recurrence.

Lemma. Consider the recurrence

$$\forall n \in \mathbb{Z}, \quad b_s(n) y_{n+s} + \cdots + b_1(n) y_{n+1} + b_0(n) y_n = 0.$$

For a solution

$$(y_n)_{n \in \mathbb{Z}} = (\dots, y_{N-2}, y_{N-1}, y_N, 0, 0, 0, \dots)$$
 with $y_N \neq 0$

to exist, N must be a root of b_0 .

Remark. If now
$$R = S^{-\delta}(q_0(n) - q_1(n) S^{-1} - \cdots)$$
 with $q_0 \not\equiv 0$ $= S^{\gamma}(b_0(n) + b_1(n) S^{-1} + \cdots)$ with $b_0 \not\equiv 0$, for a solution

$$(y_n)_{n \in \mathbb{Z}} = (...0, 0, 0, y_\ell, y_{\ell+1}..., y_{h-1}, y_h, 0, 0, 0, ...)$$
 with $y_\ell, y_h \neq 0$

to exist, one must have $q_0(\ell) = b_0(h) = 0$.

Degree bounds

Definition. The polynomial b_0 is called the **indicial polynomial at infinity** of L.

One can check that it is the indicial polynomial at 0 of the equation obtained by $x \leftarrow x^{-1}$.

Proposition. For any solution $y \in \mathbb{K}[x]$ of L(y) = 0, the degree of y is a root of b_0 .

Remark. Polynomial solutions can be large! Last week, we found a small diff. eq. annihilating the dense polynomial $(1+x)^{2N}(1+x+x^2)^N$.

From power series solutions to polynomial solutions

Lemma. Let $L = \tilde{\alpha}_r(x) \theta^r + \cdots + \tilde{\alpha}_0(x)$ with 0 an ordinary point. Let $d = \max_i \deg \tilde{\alpha}_i$.

Let $N \ge \max \{r - d - 1, \text{ all integer roots of the indicial polynomial at } \infty \text{ of } L\}$.

Then the solutions of L in $\mathbb{K}[x]$ are exactly its solutions $\sum_{n=0}^{\infty} y_n x^n \in \mathbb{K}[[x]]$ such that

$$y_{N+1} = \cdots = y_{N+d} = 0.$$

From power series solutions to polynomial solutions

Lemma. Let $L = \tilde{\alpha}_r(x) \theta^r + \cdots + \tilde{\alpha}_0(x)$ with 0 an ordinary point. Let $d = \max_i \deg \tilde{\alpha}_i$.

Let $N \geqslant \max \{r-d-1, \text{ all integer roots of the indicial polynomial at } \infty \text{ of } L\}.$

Then the solutions of L in $\mathbb{K}[x]$ are exactly its solutions $\sum_{n=0}^{\infty} y_n x^n \in \mathbb{K}[[x]]$ such that

$$y_{N+1} = \cdots = y_{N+d} = 0.$$

Proof.

- \subseteq . Any polynomial solution is also a power series solution. By the degree bound, it has $y_{N+1} = \cdots = y_{N+d} = 0$.
- \supseteq . The recurrence associated to L has order < d. Since 0 is an ordinary point, its only possible singular indices are $0, 1, \ldots, r-1$.

So $y_{N+1} = \cdots = y_{N+d} = 0$ implies $y_n = 0$ for all n > N.

From power series solutions to polynomial solutions

Lemma. Let $L = \tilde{\alpha}_r(x) \theta^r + \dots + \tilde{\alpha}_0(x)$ with 0 an ordinary point. Let $d = \max_i \deg \tilde{\alpha}_i$.

Let $N \geqslant \max\{r-d-1, \text{ all integer roots of the indicial polynomial at } \infty \text{ of } L\}.$

Then the solutions of L in $\mathbb{K}[x]$ are exactly its solutions $\sum_{n=0}^{\infty}y_nx^n\in\mathbb{K}[[x]]$ such that

$$y_{N+1} = \cdots = y_{N+d} = 0.$$

Proof.

- \subseteq . Any polynomial solution is also a power series solution. By the degree bound, it has $y_{N+1} = \cdots = y_{N+d} = 0$.
- \supseteq . The recurrence associated to L has order < d. Since 0 is an ordinary point, its only possible singular indices are 0, 1, ..., r-1. So $y_{N+1} = \cdots = y_{N+d} = 0$ implies $y_n = 0$ for all n > N.

Exercise. What happens without the assumption that 0 is an ordinary point?

Polynomial solutions of differential equations

Algorithm. *Input*: $L = \tilde{a}_r(x) \theta^r + \cdots + \tilde{a}_0(x) \in \mathbb{K}[x] \langle \theta \rangle$ *Output*: a basis of $Sol(L, \mathbb{K}[x])$

- 1. Shift x to reduce to the case where 0 is an ordinary point.
- 2. Let $b_0 =$ indicial polynomial at ∞ of L.
- 3. If b_0 has no root in \mathbb{N} , return \emptyset . *cf. Lecture* 11 *constrains* \mathbb{K} Otherwise let $d = \max_i \deg \tilde{a}_i$ and $N = \max \{r d 1, \text{ roots of } b_0 \text{ in } \mathbb{N}\}$.
- 4. Compute a basis y_1, \dots, y_r of sol. in $\mathbb{K}[[x]]$ truncated to order N + d + 1.
- 5. Solve

$$(c_1 \cdots c_r) \begin{pmatrix} y_{N+1}^{[1]} \cdots y_{N+d}^{[1]} \\ \vdots & \vdots \\ y_{N+1}^{[r]} \cdots y_{N+d}^{[r]} \end{pmatrix} = 0.$$

6. Return $\{\sum_i c_i y^{[i]} | (c_1, \dots, c_r) \in a \text{ basis of solutions of this system} \}$.

Cost: O(r d N + poly(r, d)) ops

Polynomial solutions: Remarks

• Alternative method avoiding the shift:

Adapt the algorithm for series solutions at singular points

• Quick existence check for polynomial solutions when $\mathbb{K} = \mathbb{Q}$:

Compute the $y_{N+1+i}^{[j]} \mod p$ for some prime p using the baby steps-giant steps method from last week.

More generally, one can compute the dimension, degrees and selected terms of a
basis of polynomial solutions without computing the solutions in expanded form.
 (Baby steps-giant steps and/or binary splitting).

$$a_r y^{(r)} + \dots + a_1(x) y' + a_0 y = 0$$
 (DEq)

Rational solutions reduce to polynomial solutions given a multiple of the denominator.

$$a_r y^{(r)} + \dots + a_1(x) y' + a_0 y = 0$$
 (DEq)

Rational solutions reduce to polynomial solutions given a multiple of the denominator.

Observation 1. Any pole $\xi \in \mathbb{K}$ of y must be a singular point.

Observation 2. If y has a pole of multiplicity m at $\xi \in \overline{\mathbb{K}}$, its series expansion provides a solution in $\overline{\mathbb{K}}((x-\xi))$ of valuation m.

$$a_r y^{(r)} + \dots + a_1(x) y' + a_0 y = 0$$
 (DEq)

Rational solutions reduce to polynomial solutions given a multiple of the denominator.

Observation 1. Any pole $\xi \in \overline{\mathbb{K}}$ of y must be a singular point.

Observation 2. If y has a pole of multiplicity m at $\xi \in \overline{\mathbb{K}}$, its series expansion provides a solution in $\overline{\mathbb{K}}((x-\xi))$ of valuation m.

Proposition. For all $\zeta \in \overline{\mathbb{K}}$ such that $\mathfrak{a}_r(\zeta) = 0$, let \mathfrak{m}_{ζ} be the smallest root in $\mathbb{Z}_{<0}$ of the indicial polynomial of (DEq) at ζ (if any, and $\mathfrak{m}_{\zeta} = 0$ otherwise).

Then the denominator of any rational solution of (DEq) is divisible by $Q = \prod_{\zeta} (x - \zeta)^{m_{\zeta}}$.

Better variant: attach indicial polynomials to *factors* of \mathfrak{a}_{r} instead of roots to avoid working over $\bar{\mathbb{K}}$.

$$a_r y^{(r)} + \dots + a_1(x) y' + a_0 y = 0$$
 (DEq)

Rational solutions reduce to polynomial solutions given a multiple of the denominator.

Observation 1. Any pole $\xi \in \overline{\mathbb{K}}$ of y must be a singular point.

Observation 2. If y has a pole of multiplicity m at $\xi \in \bar{\mathbb{K}}$, its series expansion provides a solution in $\bar{\mathbb{K}}((x-\xi))$ of valuation m.

Proposition. For all $\zeta \in \overline{\mathbb{K}}$ such that $\mathfrak{a}_r(\zeta) = 0$, let \mathfrak{m}_{ζ} be the smallest root in $\mathbb{Z}_{<0}$ of the indicial polynomial of (DEq) at ζ (if any, and $\mathfrak{m}_{\zeta} = 0$ otherwise).

Then the denominator of any rational solution of (DEq) is divisible by $Q = \prod_{\zeta} (x - \zeta)^{m_{\zeta}}$.

Better variant: attach indicial polynomials to factors of \mathfrak{a}_r instead of roots to avoid working over $\bar{\mathbb{K}}$.

Algorithm. Compute Q as above, change y to $\frac{w}{O}$, basis of solutions $w \in \mathbb{K}[x]$.

An exercise

Exercise. Consider the differential equation

$$(x-1)y''(x) + (-x+3)y'(x) - y(x) = 0.$$
 (E)

1. Let $y(x) = \sum_{n=-\infty} y_n (x-1)^n$ be a solution of (E). Set $y_n = 0$ for n < -N.

Show that the sequence $(y_n)_{n\in\mathbb{Z}}$ satisfies

$$\forall n \in \mathbb{Z}, (n+1)(n+2)y_{n+1} = (n+1)y_n.$$

2. Find all rational solutions of (E).

4 Differential systems

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order $\leq r$ with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

$$K \cdot Y =$$

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order $\leq r$ with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

$$K \cdot Y = K Y$$

 $(K \cdot Y)' = K'Y + KY'$

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order $\leq r$ with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

$$\begin{array}{cccccc} K \cdot Y & = & & K & Y \\ (K \cdot Y)' & = & & K'Y + KY' \\ & = & & (K' + KA) & Y \end{array}$$

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order $\leq r$ with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order $\leq r$ with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order $\leq r$ with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

Proof.

K

$$(K' + K A)$$
$$(\square'_1 + \square_1 A)$$

$$(\square_{r-1}' + \square_{r-1}A)$$

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order $\leq r$ with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order \leq r with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

ry. The entries of Y are D-finite.
$$\begin{pmatrix} K \\ (K'+KA) \\ (\square_1'+\square_1A) \end{pmatrix} r+1 \text{ vectors} \\ \text{in dimension } r \Rightarrow a_0 KY+\cdots+a_r(KY)^{(r)}=0$$

Proposition. Let Y be a solution of the system

$$Y'(x) = A(x) Y(x), \qquad A \in \mathbb{K}(x)^{r \times r}.$$

For any vector $K \in \mathbb{K}(x)^r$, the function K(x) Y(x) satisfies a scalar differential equation of order \leq r with coefficients in $\mathbb{K}(x)$.

Corollary. The entries of Y are D-finite.

ry. The entries of Y are D-finite.
$$\begin{pmatrix} K \\ (K'+KA) \\ (\square_1'+\square_1A) \end{pmatrix} r+1 \text{ vectors} \\ \text{in dimension } r \Rightarrow a_0 KY+\cdots+a_r(KY)^{(r)}=0$$

Solutions of differential systems

Assume that there was **no relation** between $K, K' + KA, \dots$ before the (r+1)th element of the sequence.

Solutions of differential systems

Assume that there was **no relation** between K, K' + KA, ... before the (r+1)th element of the sequence.

After solving the resulting scalar equation L(w) = 0:

$$\begin{pmatrix}
 & \mathsf{K} & \mathsf{--} \\
 & \mathsf{K}' + \mathsf{K} \mathsf{A} & \mathsf{--} \\
 & - \mathsf{--} \mathsf$$

Solutions of differential systems

Assume that there was **no relation** between K, K' + KA, ... before the (r + 1)th element of the sequence.

After solving the resulting scalar equation L(w) = 0:

For any rational solution of Y' = AY, the function w = KY is a rational solution of L, so we can compute the rational solutions of Y' = AY from those of L.

The cyclic vector lemma

Theorem. There exists a vector $K \in \mathbb{K}(x)^r$ such that the vectors

[Cope 1936]

$$K$$
, $\nabla K = K' + K A$, ..., $\nabla^{r-1} K$

are linearly independent over $\mathbb{K}(x)$.

Proof.

Remark. The proof gives an algorithm to compute a suitable K.

The cyclic vector lemma

Theorem. There exists a vector $K \in \mathbb{K}(x)^r$ such that the vectors

[Cope 1936]

$$K$$
, $\nabla K = K' + K A$, ..., $\nabla^{r-1} K$

are linearly independent over $\mathbb{K}(x)$.

Proof. For all i, the vector $\nabla^i K$ is of the form

$$\nabla^{\mathfrak{i}}\,K = K^{(\mathfrak{i})} + K^{(\mathfrak{i}-1)}\,Q_{\mathfrak{i},\mathfrak{i}-1} + \cdots + K\,Q_{\mathfrak{i},0} \qquad \text{where} \qquad Q_{\mathfrak{i},\mathfrak{j}} = \operatorname{poly}(A,A',\ldots) \in \mathbb{K}(x)^{r\times r}.$$

Remark. The proof gives an algorithm to compute a suitable K.

The cyclic vector lemma

Theorem. There exists a vector $K \in \mathbb{K}(x)^r$ such that the vectors

[Cope 1936]

$$K$$
, $\nabla K = K' + KA$, ..., $\nabla^{r-1}K$

are linearly independent over $\mathbb{K}(x)$.

Proof. For all i, the vector $\nabla^i K$ is of the form

$$\nabla^{\mathfrak{i}}\,K = K^{(\mathfrak{i})} + K^{(\mathfrak{i}-1)}\,Q_{\mathfrak{i},\mathfrak{i}-1} + \cdots + K\,Q_{\mathfrak{i},0} \qquad \text{where} \qquad Q_{\mathfrak{i},\mathfrak{j}} = \operatorname{poly}(A,A',\dots) \in \mathbb{K}(x)^{r \times r}.$$

Let $x_0 \in \mathbb{K} \setminus \{\text{poles of A}\}\)$. Define $v_0, \dots, v_{r-1} \in \mathbb{K}^r$ by

$$v_i = e_i - v_{i-1}Q_{i,i-1}(x_0) + \dots + v_0 Q_{i,0}(x_0),$$
 $(e_i) = \text{canonical basis of } \mathbb{K}(x)^r.$

Finally choose $K \in \mathbb{K}[x]$ such that $K(x_0) = v_0, \dots, K^{(r-1)}(x_0) = v_{r-1}$.

Remark. The proof gives an algorithm to compute a suitable K.

The cyclic vector lemma

Theorem. There exists a vector $K \in \mathbb{K}(x)^r$ such that the vectors

[Cope 1936]

$$K$$
, $\nabla K = K' + KA$, ..., $\nabla^{r-1}K$

are linearly independent over $\mathbb{K}(x)$.

Proof. For all i, the vector $\nabla^i K$ is of the form

$$\nabla^{\mathfrak{i}}\,\mathsf{K} = \mathsf{K}^{(\mathfrak{i})} + \mathsf{K}^{(\mathfrak{i}-1)}\,Q_{\mathfrak{i},\mathfrak{i}-1} + \cdots + \mathsf{K}\,Q_{\mathfrak{i},0} \qquad \text{where} \qquad Q_{\mathfrak{i},\mathfrak{j}} = \operatorname{poly}(\mathsf{A},\mathsf{A}',\dots) \in \mathbb{K}(\mathsf{x})^{\mathsf{r}\times\mathsf{r}}.$$

Let $x_0 \in \mathbb{K} \setminus \{\text{poles of A}\}\$. Define $v_0, \dots, v_{r-1} \in \mathbb{K}^r$ by

$$v_i = e_i - v_{i-1}Q_{i,i-1}(x_0) + \dots + v_0 Q_{i,0}(x_0),$$
 $(e_i) = \text{canonical basis of } \mathbb{K}(x)^r.$

Finally choose $K \in \mathbb{K}[x]$ such that $K(x_0) = v_0, \dots, K^{(r-1)}(x_0) = v_{r-1}$.

Then $\nabla^i K(x_0) = e_i$ for $0 \le i < r$. In particular the $\nabla^i K$ are linearly independent.

Remark. The proof gives an algorithm to compute a suitable K.

5 Generalized series solutions

Introduction 33

$$L = a_r(x) D^r + \dots + a_1(x) D + a_0(x)$$

$$q_0 = \text{indicial polynomial at } 0$$

We have seen that, when 0 is a singular point:

- $\deg q_0$ can be < r,
- $\dim \ker_{\mathbb{K}[[x]]} L$ can be $< \#\{\text{integer roots of } q_0\}$

Question. Define and compute a "full" basis of "series" solutions at a singular point.

When $q_0(\lambda) = 0$ for some $\lambda \notin \mathbb{Z}$, look for solutions $x^{\lambda} f(x)$ with $f(x) \in \mathbb{K}[[x]]$.

Examples.

• L = 2 (x - 1) x D + x + 1 \longrightarrow q₀(λ) = 2 λ - 1 solution: y(x) = $x^{1/2}$ (1 + x + x^2 + ···)

Remark. Here x^{λ} with $\lambda \in \mathbb{K}$ denotes *some algebraic object* satisfying the "usual relations"

E.g., start with $\mathbb{K}((x))[e_{\lambda}]_{\lambda \in \mathbb{K}}$, quotient by the relations $e_0 = 1$, $e_{\lambda+1} = x e_{\lambda}$, and $e_{\lambda+\mu} = e_{\lambda} e_{\mu}$, and set $e'_{\lambda} = \lambda e_{\lambda-1}$ to obtain a differential ring containing $\mathbb{K}((x))$.

When $q_0(\lambda) = 0$ for some $\lambda \notin \mathbb{Z}$, look for solutions $x^{\lambda} f(x)$ with $f(x) \in \mathbb{K}[[x]]$.

Examples.

- L = 2 (x 1) x D + x + 1 \longrightarrow q₀(λ) = 2 λ 1 solution: y(x) = $x^{1/2}$ (1 + x + x^2 + ···)
- $L = \theta^2 2 = x^2 D^2 + x D 1 \longrightarrow q_0(\lambda) = \lambda^2 2$ solutions: $x^{\pm \sqrt{2}}$

Remark. Here x^{λ} with $\lambda \in \mathbb{K}$ denotes *some algebraic object* satisfying the "usual relations"

E.g., start with $\mathbb{K}((x))[e_{\lambda}]_{\lambda \in \mathbb{K}}$, quotient by the relations $e_0 = 1$, $e_{\lambda+1} = x e_{\lambda}$, and $e_{\lambda+\mu} = e_{\lambda} e_{\mu}$, and set $e'_{\lambda} = \lambda e_{\lambda-1}$ to obtain a differential ring containing $\mathbb{K}((x))$.

When $q_0(\lambda) = 0$ for some $\lambda \notin \mathbb{Z}$, look for solutions $x^{\lambda} f(x)$ with $f(x) \in \mathbb{K}[[x]]$.

Examples.

- L = 2 (x 1) x D + x + 1 \longrightarrow q₀(λ) = 2 λ 1 solution: y(x) = $x^{1/2}$ (1 + x + x^2 + ···)
- $L = \theta^2 2 = x^2 D^2 + x D 1 \longrightarrow q_0(\lambda) = \lambda^2 2$ solutions: $x^{\pm \sqrt{2}}$
- $L = x^2 D^2 + x D 1 + x \longrightarrow q_0(\lambda) = \lambda^2 2$ $\mathbb{K} = \bar{\mathbb{Q}}$ solutions: $x^{\pm \sqrt{2}} \left(1 + \frac{1}{7} (1 \mp \sqrt{2}) x + \frac{1}{28} (5 \mp 3 \sqrt{2}) x^2 + \cdots \right)$

Remark. Here x^{λ} with $\lambda \in \mathbb{K}$ denotes *some algebraic object* satisfying the "usual relations" E.g., start with $\mathbb{K}((x))[e_{\lambda}]_{\lambda \in \mathbb{K}}$, quotient by the relations $e_0 = 1$, $e_{\lambda+1} = x$ e_{λ} , and $e_{\lambda+\mu} = e_{\lambda}$ e_{μ} , and set

E.g., start with $\mathbb{K}((x))[\epsilon_{\lambda}]_{\lambda \in \mathbb{K}}$, quotient by the relations $\epsilon_0 = 1$, $\epsilon_{\lambda+1} = x \epsilon_{\lambda}$, and $\epsilon_{\lambda+\mu} = \epsilon_{\lambda} \epsilon_{\mu}$, and $\epsilon_{\lambda} = \epsilon_{\lambda} \epsilon_{\mu}$, and $\epsilon_{\lambda} = \epsilon_{\lambda} \epsilon_{\mu}$, and $\epsilon_{\lambda} = \epsilon_{\lambda} \epsilon_{\mu}$.

When $q_0(\lambda) = 0$ for some $\lambda \notin \mathbb{Z}$, look for solutions $x^{\lambda} f(x)$ with $f(x) \in \mathbb{K}[[x]]$.

Examples.

- L = 2 (x 1) x D + x + 1 \longrightarrow q₀(λ) = 2 λ 1 solution: y(x) = $x^{1/2}$ (1 + x + x^2 + ···)
- $L = \theta^2 2 = x^2 D^2 + x D 1 \longrightarrow q_0(\lambda) = \lambda^2 2$ solutions: $x^{\pm \sqrt{2}}$
- $L = x^2 D^2 + x D 1 + x \longrightarrow q_0(\lambda) = \lambda^2 2$ $\mathbb{K} = \bar{\mathbb{Q}}$ solutions: $x^{\pm \sqrt{2}} \left(1 + \frac{1}{7} (1 \mp \sqrt{2}) x + \frac{1}{28} (5 \mp 3 \sqrt{2}) x^2 + \cdots \right)$

Algorithm. Same as for Laurent series.

Remark. Here x^{λ} with $\lambda \in \mathbb{K}$ denotes *some algebraic object* satisfying the "usual relations"

E.g., start with $\mathbb{K}((x))[e_{\lambda}]_{\lambda \in \mathbb{K}}$, quotient by the relations $e_0 = 1$, $e_{\lambda+1} = x e_{\lambda}$, and $e_{\lambda+\mu} = e_{\lambda} e_{\mu}$, and set $e'_{\lambda} = \lambda e_{\lambda-1}$ to obtain a differential ring containing $\mathbb{K}((x))$.

[Frobenius 1873, ...]

To recover $\deg q_0$ linearly independent solutions, consider solutions $x^{\lambda} \big(f_0(x) + f_1(x) \log x + \cdots + f_{r-1}(x) \log(x)^{r-1} \big)$.

Again, $\log(x)$ is just a notation for an element of a differential extension with $\log'(x) = 1/x$.

[Frobenius 1873, ...]

To recover $\deg q_0$ linearly independent solutions, consider solutions $x^{\lambda} \big(f_0(x) + f_1(x) \log x + \dots + f_{r-1}(x) \log(x)^{r-1} \big)$.

Again, $\log(x)$ is just a notation for an element of a differential extension with $\log'(x) = 1/x$.

Examples.

• L = $\theta^2 = x^2 D^2 + x D \longrightarrow q_0(\lambda) = \lambda^2$ solutions spanned by 1 and $\log(x)$

[Frobenius 1873, ...]

To recover $\deg q_0$ linearly independent solutions, consider solutions $x^{\lambda} \big(f_0(x) + f_1(x) \log x + \dots + f_{r-1}(x) \log(x)^{r-1} \big)$.

Again, $\log(x)$ is just a notation for an element of a differential extension with $\log'(x) = 1/x$.

Examples.

- L = $\theta^2 = x^2 D^2 + x D \longrightarrow q_0(\lambda) = \lambda^2$ solutions spanned by 1 and $\log(x)$
- L = x D² D + 1 \longrightarrow q₀(λ) = λ (λ 2) rec: n (n 2) y_n = y_{n-1} solutions: $x^2 \frac{1}{3}x^3 + \cdots$, $(1 + x \frac{2}{9}x^3 + \cdots) + (-\frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots) \log(x)$

[Frobenius 1873, ...]

To recover $\deg q_0$ linearly independent solutions, consider solutions $x^{\lambda} \big(f_0(x) + f_1(x) \log x + \dots + f_{r-1}(x) \log(x)^{r-1} \big)$.

Again, $\log(x)$ is just a notation for an element of a differential extension with $\log'(x) = 1/x$.

Examples.

- $L = \theta^2 = x^2 D^2 + x D \longrightarrow q_0(\lambda) = \lambda^2$ solutions spanned by 1 and $\log(x)$
- L = x D² D + 1 \longrightarrow q₀(λ) = λ (λ 2) rec: n (n 2) y_n = y_{n-1} solutions: $x^2 \frac{1}{3}x^3 + \cdots$, $(1 + x \frac{2}{9}x^3 + \cdots) + (-\frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots) \log(x)$

Algorithm. Similar as before with structured systems of recurrences.

When hitting a singular index, insert a new $\log(x)^k$ to gain a degree of freedom.

 $L = x D^2 - D + 1$

$$y(x) = \sum u_n x^n + \sum v_n x^n \log(x)$$

$$L = x D^2 - D + 1$$

$$\begin{array}{lll} y(x) & = & \displaystyle \sum u_n x^n + \sum \nu_n x^n \log(x) \\ y'(x) & = & \displaystyle \sum n u_n x^{n-1} + \sum n \nu_n x^{n-1} \log(x) + \sum \nu_n x^{n-1} \end{array}$$

$$L = x D^2 - D + 1$$

$$y(x) = \sum u_{n} x^{n} + \sum v_{n} x^{n} \log(x)$$

$$y'(x) = \sum n u_{n} x^{n-1} + \sum n v_{n} x^{n-1} \log(x) + \sum v_{n} x^{n-1}$$

$$= \sum (n u_{n} + v_{n}) x^{n-1} + \sum n v_{n} x^{n-1} \log(x)$$

$$L = x D^2 - D + 1$$

$$\begin{array}{lll} y(x) & = & \sum u_{n}x^{n} + \sum v_{n}x^{n}\log(x) \\ y'(x) & = & \sum nu_{n}x^{n-1} + \sum nv_{n}x^{n-1}\log(x) + \sum v_{n}x^{n-1} \\ & = & \sum \frac{(nu_{n} + v_{n})}{(nu_{n} + v_{n})}x^{n-1} + \sum nv_{n}x^{n-1}\log(x) \\ y''(x) & = & \sum \underbrace{[(n-1)](nu_{n} + v_{n})}_{(n-1)} + nv_{n} x^{n-2} + \sum (n-1)\underbrace{nv_{n}}_{(n-1)}x^{n-2} + \sum \underbrace{nv_{n}}_{(n-1)}x^{n-2} + \sum \underbrace{nv_{n}}_{(n-1)$$

$$L = x D^2 - D + 1$$

$$\begin{array}{lll} y(x) & = & \sum u_{n}x^{n} + \sum v_{n}x^{n}\log(x) \\ y'(x) & = & \sum nu_{n}x^{n-1} + \sum nv_{n}x^{n-1}\log(x) + \sum v_{n}x^{n-1} \\ & = & \sum \underbrace{(nu_{n} + v_{n})}_{(nu_{n} + v_{n})} x^{n-1} + \sum \underbrace{nv_{n}}_{n}x^{n-1}\log(x) \\ y''(x) & = & \sum \underbrace{[(n-1)](nu_{n} + v_{n})}_{(n^{2} - n)u_{n} + (2n-1)v_{n}} x^{n-2} + \sum \underbrace{(n-1)}_{n}\underbrace{nv_{n}}_{n}x^{n-2}\log(x) \end{array}$$

$$Ly(x) = \sum_{\substack{\text{REC}_0}} \underbrace{\left[n(n-2)u_n + u_{n-1} + 2nv_n\right]}_{\substack{\text{REC}_1}} x^{n-1} + \sum_{\substack{\text{REC}_1}} \underbrace{\left[n(n-2)v_n + v_{n-1}\right]}_{\substack{\text{REC}_1}} x^{n-1} \log(x)$$

$$L = x D^2 - D + 1$$

$$\begin{array}{lll} y(x) & = & \sum u_{n}x^{n} + \sum v_{n}x^{n}\log(x) \\ y'(x) & = & \sum nu_{n}x^{n-1} + \sum nv_{n}x^{n-1}\log(x) + \sum v_{n}x^{n-1} \\ & = & \sum \frac{(nu_{n} + v_{n})}{(nu_{n} + v_{n})}x^{n-1} + \sum \frac{nv_{n}}{n}x^{n-1}\log(x) \\ y''(x) & = & \sum \underbrace{[(n-1)](nu_{n} + v_{n})}_{(n^{2} - n)u_{n} + (2n-1)v_{n}} x^{n-2} + \sum (n-1) \frac{nv_{n}}{n}x^{n-2}\log(x) \end{array}$$

$$Ly(x) = \sum_{\substack{\text{REC}_0}} \underbrace{\left[n\left(n-2\right)u_n + u_{n-1} + 2\,n\,\nu_n\right]}_{\text{REC}_0} x^{n-1} + \sum_{\substack{\text{REC}_1}} \underbrace{\left[n\left(n-2\right)\nu_n + \nu_{n-1}\right]}_{\text{REC}_1} x^{n-1} \log(x)$$

$$L = x D^2 - D + 1$$

$$y(x) = \sum_{\mathbf{u}_{n}} \mathbf{u}_{n} x^{n} + \sum_{\mathbf{v}_{n}} \mathbf{v}_{n} \log(x)$$

$$y'(x) = \sum_{\mathbf{u}_{n}} \mathbf{u}_{n} x^{n-1} + \sum_{\mathbf{v}_{n}} \mathbf{u}_{n} x^{n-1} \log(x) + \sum_{\mathbf{v}_{n}} \mathbf{v}_{n} x^{n-1}$$

$$= \sum_{\mathbf{u}_{n}} \frac{(\mathbf{n} \mathbf{u}_{n} + \mathbf{v}_{n})}{(\mathbf{n} \mathbf{u}_{n} + \mathbf{v}_{n})} x^{n-1} + \sum_{\mathbf{u}_{n}} \mathbf{u}_{n} x^{n-1} \log(x)$$

$$y''(x) = \sum_{\mathbf{u}_{n}} \frac{(\mathbf{n} \mathbf{u}_{n} + \mathbf{v}_{n})}{(\mathbf{n} \mathbf{u}_{n} + \mathbf{v}_{n})} + \mathbf{n} \mathbf{v}_{n} x^{n-1} + \sum_{\mathbf{u}_{n}} \mathbf{u}_{n} x^{n-1} \log(x)$$

$$Ly(x) = \sum_{\substack{\text{REC}_0}} \underbrace{\left[n\left(n-2\right)u_n + u_{n-1} + 2\,n\,\nu_n\right]}_{\text{REC}_0} x^{n-1} + \sum_{\substack{\text{REC}_1}} \underbrace{\left[n\left(n-2\right)\nu_n + \nu_{n-1}\right]}_{\text{REC}_1} x^{n-1} \log(x)$$

$$L = x D^2 - D + 1$$

$$\begin{array}{lll} y(x) & = & \displaystyle \sum_{} u_{n}x^{n} + \sum_{} v_{n}x^{n}\log(x) \\ y'(x) & = & \displaystyle \sum_{} nu_{n}x^{n-1} + \sum_{} nv_{n}x^{n-1}\log(x) + \sum_{} v_{n}x^{n-1} \\ & = & \displaystyle \sum_{} \underbrace{(nu_{n} + v_{n})}_{(nu_{n} + v_{n})} x^{n-1} + \sum_{} nv_{n} x^{n-1}\log(x) \\ y''(x) & = & \displaystyle \sum_{} \underbrace{(n-1)}_{(nu_{n} + v_{n})} + nv_{n} x^{n-1} + \sum_{} (n-1)}_{(n^{2} - n)u_{n} + (2n-1)v_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{n} v_{n} x^{n-2} \log(x) \end{array}$$

$$Ly(x) = \sum_{\substack{\text{REC}_0}} \underbrace{\left[n\left(n-2\right)u_n + u_{n-1} + 2\,n\,\nu_n\right]}_{\text{REC}_0} x^{n-1} + \sum_{\substack{\text{REC}_1}} \underbrace{\left[n\left(n-2\right)\nu_n + \nu_{n-1}\right]}_{\text{REC}_1} x^{n-1} \log(x)$$

$$L = x D^2 - D + 1$$

$$\begin{array}{lll} y(x) & = & \displaystyle \sum_{} u_{n}x^{n} + \sum_{} \nu_{n}x^{n}\log(x) \\ y'(x) & = & \displaystyle \sum_{} nu_{n}x^{n-1} + \sum_{} n\nu_{n}x^{n-1}\log(x) + \sum_{} \nu_{n}x^{n-1} \\ & = & \displaystyle \sum_{} \underbrace{(nu_{n} + \nu_{n})}_{(nu_{n} + \nu_{n})} x^{n-1} + \sum_{} n\nu_{n} x^{n-1}\log(x) \\ y''(x) & = & \displaystyle \sum_{} \underbrace{(n-1)}_{(nu_{n} + \nu_{n})} + n\nu_{n} x^{n-1} + \sum_{} (n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{(n^{2} - n)u_{n} + (2n-1)\nu_{n}} x^{$$

$$Ly(x) = \sum_{\substack{\text{REC}_0}} \underbrace{\left[n\left(n-2\right)u_n + u_{n-1} + 2\,n\,\nu_n\right]}_{\text{REC}_0} x^{n-1} + \sum_{\substack{\text{REC}_1}} \underbrace{\left[n\left(n-2\right)\nu_n + \nu_{n-1}\right]}_{\text{REC}_1} x^{n-1} \log(x)$$

$$L = x D^2 - D + 1$$

$$y(x) = \sum_{\mathbf{u}_{n}} \mathbf{u}_{n} x^{n} + \sum_{\mathbf{v}_{n}} \mathbf{v}_{n} \log(x)$$

$$y'(x) = \sum_{\mathbf{u}_{n}} \mathbf{u}_{n} x^{n-1} + \sum_{\mathbf{v}_{n}} \mathbf{u}_{n} x^{n-1} \log(x) + \sum_{\mathbf{v}_{n}} \mathbf{v}_{n} x^{n-1}$$

$$= \sum_{\mathbf{u}_{n}} \frac{(\mathbf{n} \mathbf{u}_{n} + \mathbf{v}_{n})}{(\mathbf{n} \mathbf{u}_{n} + \mathbf{v}_{n})} x^{n-1} + \sum_{\mathbf{u}_{n}} \mathbf{u}_{n} x^{n-1} \log(x)$$

$$y''(x) = \sum_{\mathbf{u}_{n}} \frac{(\mathbf{n} \mathbf{u}_{n} + \mathbf{v}_{n})}{(\mathbf{n} \mathbf{u}_{n} + \mathbf{v}_{n})} + \mathbf{n} \mathbf{v}_{n} x^{n-1} + \sum_{\mathbf{u}_{n}} \mathbf{u}_{n} x^{n-1} \log(x)$$

$$Ly(x) \ = \ \sum \ \underbrace{\left[n\,(n-2)\,u_n + u_{n-1} + 2\,n\,\nu_n\right]}_{REC_0} x^{n-1} + \sum \ \underbrace{\left[n\,(n-2)\,\nu_n + \nu_{n-1}\right]}_{REC_1} x^{n-1} \log(x)$$

$$L = x D^2 - D + 1$$

$$\begin{array}{lll} y(x) & = & \displaystyle \sum_{} u_{n}x^{n} + \sum_{} v_{n}x^{n}\log(x) \\ y'(x) & = & \displaystyle \sum_{} nu_{n}x^{n-1} + \sum_{} nv_{n}x^{n-1}\log(x) + \sum_{} v_{n}x^{n-1} \\ & = & \displaystyle \sum_{} \underbrace{(nu_{n} + v_{n})}_{(nu_{n} + v_{n})} x^{n-1} + \sum_{} nv_{n} x^{n-1}\log(x) \\ y''(x) & = & \displaystyle \sum_{} \underbrace{(n-1)}_{(nu_{n} + v_{n})} + nv_{n} x^{n-1} + \sum_{} x^{n-2} + \sum_{} x^{n$$

$$Ly(x) = \sum_{\substack{\text{REC}_0}} \underbrace{\left[n\left(n-2\right)u_n + u_{n-1} + 2\,n\,\nu_n\right]}_{\text{REC}_0} x^{n-1} + \sum_{\substack{\text{REC}_1}} \underbrace{\left[n\left(n-2\right)\nu_n + \nu_{n-1}\right]}_{\text{REC}_1} x^{n-1} \log(x)$$

$$L = x D^2 - D + 1$$

$$\begin{array}{lll} y(x) & = & \displaystyle \sum_{} u_{n}x^{n} + \sum_{} v_{n}x^{n}\log(x) \\ y'(x) & = & \displaystyle \sum_{} nu_{n}x^{n-1} + \sum_{} nv_{n}x^{n-1}\log(x) + \sum_{} v_{n}x^{n-1} \\ & = & \displaystyle \sum_{} \underbrace{(nu_{n} + v_{n})}_{(nu_{n} + v_{n})} x^{n-1} + \sum_{} nv_{n} x^{n-1}\log(x) \\ y''(x) & = & \displaystyle \sum_{} \underbrace{(n-1)}_{(nu_{n} + v_{n})} + nv_{n} x^{n-1} + \sum_{} (n-1)}_{(n^{2} - n)u_{n} + (2n-1)v_{n}} x^{n-2} + \sum_{} (n-1) \underbrace{(n-1)}_{n} nv_{n} x^{n-2} \log(x) \end{array}$$

$$Ly(x) = \sum_{\substack{\text{REC}_0}} \underbrace{\left[n\left(n-2\right)u_n + u_{n-1} + 2\,n\,\nu_n\right]}_{\text{REC}_0} x^{n-1} + \sum_{\substack{\text{REC}_1}} \underbrace{\left[n\left(n-2\right)\nu_n + \nu_{n-1}\right]}_{\text{REC}_1} x^{n-1} \log(x)$$

Regular singular points

Definition. A singular point where the indicial polynomial has degree r is called a **regular singular point**.

Proposition. Let $L \in \mathbb{K}(x)\langle D \rangle$ be an operator of order r with a regular singular point at 0.

Then L admits r linearly independent formal solutions of the form

$$x^{\lambda}\big(f_0(x)+f_1(x)\log x+\cdots+f_K(x)\log(x)^K\big), \qquad f_k\!\in\!\mathbb{K}(\lambda)[[x]],$$

with K < r and λ among the roots of the indicial polynomial.

Proposition. When $\mathbb{K} = \mathbb{C}$, the f_k are convergent power series.

I.e., one obtains a basis of solutions analytic in $\{|z| < \rho\} \setminus (-\rho, 0]$ for some $\rho > 0$.

Irregular singular points

When $\deg q_0 < r$, several new phenomena.

Theorem. Assume that \mathbb{K} is algebraically closed.

[Fabry 1885, ...]

Any linear differential equation of order r with coefficients in $\mathbb{K}((x))$ admits r linearly independent formal solutions of the form

$$\exp\left(\gamma_\ell x^{-\ell/p} + \dots + \gamma_1 x^{-1/p}\right) x^{\lambda} \bigg(f_0(x^{1/p}) + \dots + f_{r-1}(x^{1/p}) \log(x)^{r-1}\bigg)$$

where $p \in \mathbb{N}$, $\gamma_i, \lambda \in \mathbb{K}$, and $f_j \in \mathbb{K}[[x]]$.

The series f_k are typically divergent.

When $\mathbb{K} = \mathbb{C}$, these expansions can still be interpreted as asymptotic expansions of analytic solutions.

$$L = \sum_{i,j} \alpha_{i,j} x^{j} D^{i}$$

$$\sigma > 0$$

Suppose
$$y(x) \ = \ e^{\gamma x^{-\sigma} + \cdots } \cdot x^{\lambda} \cdot (1 + \square \, x^{\tau})$$

Then
$$y'(x) =$$

$$\sigma > 0$$

Goal. Find the leading term inside the exponential.

 $L = \sum_{i,j} a_{i,j} x^{j} D^{i}$ $\sigma > 0$

Suppose
$$y(x) = e^{\gamma x^{-\sigma} + \cdots \cdot x^{\lambda}} \cdot (1 + \Box x^{\tau})$$

Then
$$y'(x) = -\gamma \sigma x^{-\sigma-1} e^{\gamma x^{-\sigma} + \cdots \cdot x^{\lambda}} \cdot (1 + \cdots) + e^{\gamma x^{-\sigma} + \cdots \cdot \lambda} x^{\lambda-1} \cdot (1 + \cdots) + e^{\gamma x^{-\sigma} + \cdots \cdot x^{\lambda}} \cdot (\Box x^{\tau-1} + \cdots)$$

Goal. Find the leading term inside the exponential.
$$L = \sum_{i,j} \alpha_{i,j} x^j D^i$$
 Suppose
$$y(x) = e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (1 + \Box x^{\tau})$$
 $\sigma > 0$

Then
$$y'(x) = -\gamma \sigma x^{-\sigma-1} e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (1 + \cdots) + e^{\gamma x^{-\sigma} + \cdots} \cdot \lambda x^{\lambda-1} \cdot (1 + \cdots) + e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (\Box x^{\tau-1} + \cdots) = -\gamma \sigma e^{\gamma x^{-\sigma} + \cdots} x^{\lambda - \sigma - 1} (1 + \cdots)$$

$$= \sum_{i,j} a_{i,j} x^{j} D^{i}$$

Suppose
$$y(x) = e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (1 + \Box x^{\tau})$$
 Then
$$y'(x) = -\gamma \sigma x^{-\sigma-1} e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (1 + \cdots)$$

$$+ e^{\gamma x^{-\sigma} + \cdots} \cdot \lambda x^{\lambda-1} \cdot (1 + \cdots)$$

$$+ e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (\Box x^{\tau-1} + \cdots)$$

$$= -\gamma \sigma e^{\gamma x^{-\sigma} + \cdots} x^{\lambda - \sigma-1} (1 + \cdots)$$

$$x^{j} D^{i} \cdot y(x) =$$

$$L = \sum_{i,j} \alpha_{i,j} x^{j} D^{i}$$

$$\sigma > 0$$

$$L = \sum_{i,j} \alpha_{i,j} x^{j} D^{i}$$

$$\sigma > 0$$

Suppose
$$y(x) = e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (1 + \Box x^{\tau})$$
Then
$$y'(x) = -\gamma \sigma x^{-\sigma-1} e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (1 + \cdots) + e^{\gamma x^{-\sigma} + \cdots} \cdot \lambda x^{\lambda-1} \cdot (1 + \cdots) + e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (\Box x^{\tau-1} + \cdots) = -\gamma \sigma e^{\gamma x^{-\sigma} + \cdots} x^{\lambda - \sigma - 1} (1 + \cdots)$$

$$x^{j} D^{i} \cdot y(x) = (-\gamma \sigma)^{i} x^{j-i(\sigma-1)} \cdot e^{\gamma x^{-1/p} + \cdots} x^{\lambda} (1 + \cdots)$$

Goal. Find the leading term inside the exponential.

$$L = \sum_{i,j} a_{i,j} x^{j} D^{i}$$

$$\sigma > 0$$

Then

$$y(x) = e^{\gamma x^{-\sigma} + \cdots \cdot x^{\lambda}} \cdot (1 + \Box x^{\tau})$$

$$y'(x) = -\gamma \sigma x^{-\sigma-1} e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (1 + \cdots)$$

$$+ e^{\gamma x^{-\sigma} + \cdots} \cdot \lambda x^{\lambda-1} \cdot (1 + \cdots)$$

$$+ e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (\Box x^{\tau-1} + \cdots)$$

$$= -\gamma \sigma e^{\gamma x^{-\sigma} + \cdots} x^{\lambda - \sigma - 1} (1 + \cdots)$$

$$x^{j} D^{i} \cdot y(x) = (-\gamma \sigma)^{i} x^{j-i(\sigma-1)} \cdot e^{\gamma x^{-1/p} + \cdots} x^{\lambda} (1 + \cdots)$$

Fix σ . To have $L \cdot y = 0$, the leading $x^{j-i(\sigma-1)}$ (smallest exponent) must be reached at lest twice when considering all $a_{i,j} x^j D^i \cdot y(x)$:

$$j_1 - i_1 (\sigma - 1) = j_2 - i_2 (\sigma - 1)$$
 \Rightarrow $\sigma - 1 = \frac{j_2 - j_1}{i_2 - i_1}$

Goal. Find the leading term inside the exponential.

$$L = \sum_{i,j} a_{i,j} x^{j} D^{i}$$

$$\sigma > 0$$

$$y(x) = e^{\gamma x^{-\sigma} + \cdots \cdot x^{\lambda}} \cdot (1 + \Box x^{\tau})$$

Then

$$y'(x) = -\gamma \sigma x^{-\sigma-1} e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (1 + \cdots)$$

$$+ e^{\gamma x^{-\sigma} + \cdots} \cdot \lambda x^{\lambda-1} \cdot (1 + \cdots)$$

$$+ e^{\gamma x^{-\sigma} + \cdots} \cdot x^{\lambda} \cdot (\Box x^{\tau-1} + \cdots)$$

$$= -\gamma \sigma e^{\gamma x^{-\sigma} + \cdots} x^{\lambda - \sigma - 1} (1 + \cdots)$$

$$x^{j} D^{i} \cdot y(x) = (-\gamma \sigma)^{i} x^{j-i(\sigma-1)} \cdot e^{\gamma x^{-1/p} + \cdots} x^{\lambda} (1 + \cdots)$$

Fix σ . To have L \cdot y = 0, the leading $x^{j-i(\sigma-1)}$ (smallest exponent) must be reached at lest twice when considering all $a_{i,i}x^{j}D^{i} \cdot u(x)$:

$$j_1 - i_1 (\sigma - 1) = j_2 - i_2 (\sigma - 1)$$
 \Rightarrow $\sigma - 1 = \frac{j_2 - j_1}{i_2 - i_1}$

Additionally the corresponding $a_{i,j}(-\gamma \sigma)$ must sum to zero (characteristic equation).

Computing all generalized series solutions

$$y(x) = \exp\left(\begin{array}{c} \gamma_\ell x^{-\ell/p} \end{array} + \dots + \gamma_1 \, x^{-1/p} \right) x^{\lambda} \Big(f_0(x^{1/p}) + \dots + f_{r-1}(x^{1/p}) \log(x)^{r-1} \Big)$$

To compute a basis of generalized series solutions:

- Compute solutions with no exponential factor as in the regular case
- Find candidates for $-\ell/p$ using the Newton polygon
- Find candidates for γ_ℓ using the characteristic equation
- For each candidate, write $y(x) = e^{-\gamma_{\ell} x^{-\ell/p}} \tilde{y}(x^{1/p})$ and recurse

6 Bonus:

First-order factors

Hyperexponential solutions,

Definition. A "function" y(x) is called **hyperexponential** over \mathbb{K} when $\frac{y'(x)}{y(x)} \in \mathbb{K}(x)$.

Here "function" = analytic function over \mathbb{C} , or more generally element of a differential extension of $\mathbb{K}(x)$.

Examples:
$$\frac{x^3+2}{x^2-1}$$
, $\sqrt{1+x}$, $e^x \frac{\sqrt{1+x}}{x^2+1}$

Goal. Given L, compute all hyperexponential solutions.

Definition. A "function" y(x) is called hyperexponential over \mathbb{K} when $\frac{y'(x)}{y(x)} \in \mathbb{K}(x)$.

Here "function" = analytic function over \mathbb{C} , or more generally element of a differential extension of $\mathbb{K}(x)$.

Examples:
$$\frac{x^3+2}{x^2-1}$$
, $\sqrt{1+x}$, $e^x \frac{\sqrt{1+x}}{x^2+1}$

Closed form:

$$y(x) = \exp \int \left[\frac{\beta_{1,1}}{x - \xi_1} + \frac{\beta_{1,2}}{(x - \xi_1)^2} + \dots + \frac{\beta_{2,1}}{x - \xi_2} + \dots \right]$$
$$= e^{\operatorname{rat}(x)} (x - \xi_1)^{\beta_{1,1}} (x - \xi_2)^{\beta_{2,1}} \dots$$

Goal. Given L, compute all hyperexponential solutions.

Definition. A "function" y(x) is called hyperexponential over \mathbb{K} when $\frac{y'(x)}{y(x)} \in \mathbb{K}(x)$.

Here "function" = analytic function over \mathbb{C} , or more generally element of a differential extension of $\mathbb{K}(x)$.

Examples:
$$\frac{x^3+2}{x^2-1}$$
, $\sqrt{1+x}$, $e^x \frac{\sqrt{1+x}}{x^2+1}$

Closed form:

$$y(x) = \exp \int \left[\frac{\beta_{1,1}}{x - \xi_1} + \frac{\beta_{1,2}}{(x - \xi_1)^2} + \dots + \frac{\beta_{2,1}}{x - \xi_2} + \dots \right]$$
$$= e^{\operatorname{rat}(x)} (x - \xi_1)^{\beta_{1,1}} (x - \xi_2)^{\beta_{2,1}} \dots$$

Goal. Given L, compute all hyperexponential solutions.

Note that the set of hyperexponential solutions is not a vector space!

Definition. A "function" y(x) is called hyperexponential over \mathbb{K} when $\frac{y'(x)}{u(x)} \in \mathbb{K}(x)$.

Here "function" = analytic function over \mathbb{C} , or more generally element of a differential extension of $\mathbb{K}(x)$.

Examples:
$$\frac{x^3+2}{x^2-1}$$
, $\sqrt{1+x}$, $e^x \frac{\sqrt{1+x}}{x^2+1}$

Closed form:

$$y(x) = \exp \int \left[\frac{\beta_{1,1}}{x - \xi_1} + \frac{\beta_{1,2}}{(x - \xi_1)^2} + \dots + \frac{\beta_{2,1}}{x - \xi_2} + \dots \right]$$
$$= e^{\operatorname{rat}(x)} (x - \xi_1)^{\beta_{1,1}} (x - \xi_2)^{\beta_{2,1}} \dots$$

Goal. Given L, compute all hyperexponential solutions.

Note that the set of hyperexponential solutions is not a vector space!

Proposition. A function y is a hyperexponential solution of a differential operator L iff L is right-divisible by D - y'/y.

Consider an hyperexponential function

$$y(x) = e^{\frac{p_1(x)}{(x-\xi_1)^{m_1}} + \frac{p_2(x)}{(x-\xi_2)^{m_2}} + \cdots} (x-\xi_1)^{\beta_{1,1}} (x-\xi_2)^{\beta_{2,1}} \cdots$$

Consider an hyperexponential function

$$y(x) = e^{\frac{p_1(x)}{(x-\xi_1)^{m_1}} + \frac{p_2(x)}{(x-\xi_2)^{m_2}} + \cdots} (x-\xi_1)^{\beta_{1,1}} (x-\xi_2)^{\beta_{2,1}} \cdots$$

At ξ_i :

$$y(\xi_{i}+z)=e^{\gamma_{m_{i}}z^{-m_{i}}+\cdots+\gamma_{1}z^{-1}}z^{\beta_{i,1}}(\Box+\Box z+\cdots). \tag{*}$$

Consider an hyperexponential function

$$y(x) = e^{\frac{p_1(x)}{(x-\xi_1)^{m_1}} + \frac{p_2(x)}{(x-\xi_2)^{m_2}} + \cdots} (x-\xi_1)^{\beta_{1,1}} (x-\xi_2)^{\beta_{2,1}} \cdots$$

At ξ_i :

$$y(\xi_{i}+z)=e^{\gamma_{\mathfrak{m}_{i}}z^{-\mathfrak{m}_{i}}+\cdots+\gamma_{1}z^{-1}}z^{\beta_{i,1}}(\square+\square z+\cdots). \tag{*}$$

If $L \cdot y = 0$, this expansion must be among the generalized series solutions of L at ξ_i .

Consider an hyperexponential function

$$y(x) = e^{\frac{p_1(x)}{(x-\xi_1)^{m_1}} + \frac{p_2(x)}{(x-\xi_2)^{m_2}} + \cdots} (x-\xi_1)^{\beta_{1,1}} (x-\xi_2)^{\beta_{2,1}} \cdots$$

At ξ_i :

$$y(\xi_i + z) = e^{\gamma_{m_i} z^{-m_i} + \dots + \gamma_1 z^{-1}} z^{\beta_{i,1}} (\square + \square z + \dots). \tag{*}$$

If $L \cdot y = 0$, this expansion must be among the generalized series solutions of L at ξ_i .

Definition. We call:

- local exponential parts of L at ξ the factors $\exp\left(\gamma_{\ell}z^{-\ell/p} + \dots + \gamma_{1}z^{-1/p}\right)z^{\lambda}$ appearing in generalized series solutions in $z = x \xi$, considered up integer powers of z;
- **local exponential part** of y at ξ the corresponding factor in (*);
- global exponential part of y its equivalence class for the relation

$$y_1 \sim y_2 \Leftrightarrow \frac{y_1}{y_2} \in \mathbb{K}(x).$$

- Idea: the collection of local exponential parts of y at every ξ determines its global exponential part;
 - for y to be a solution of L,
 the local exponential parts of y at every ξ
 must be among those of L.

The classical algorithm

[Fabry 1885]

- Idea: the collection of local exponential parts of y at every ξ determines its global exponential part;
 - for y to be a solution of L,
 the local exponential parts of y at every ξ
 must be among those of L.

Algorithm. *Input*: $L \in \mathbb{K}(x)\langle D \rangle$ *Output*: The set of hyperexponential solutions of L

- 1. Compute the singular points $\xi_0, \dots, \xi_d \in \mathbb{K} \cup \{\infty\}$ of L and the local exponential parts $E_{i,0}, \dots, E_{i,r_i}$ at each ξ_i
- 2. For each tuple $\mathbf{u} = (u_0, \dots, u_d)$ with $u_i \leq r_i$
 - a. Let $e_{\mathbf{u}}(x)$ be a representative of the global exponential part $E_{0,u_0}\cdots E_{d,u_d}$
 - b. Write $y(x) = e_u(x) \, \tilde{y}(x)$ in $L \cdot y = 0$; compute an operator L_u annihilating \tilde{y}
 - c. Compute the space V_u of rational solutions of L_u
- 3. Return $\bigcup_{\mathbf{u}} e_{\mathbf{u}}(\mathbf{x}) V_{\mathbf{u}}$.

• Combinatorial explosion:

L of order r and deg d

```
Up to d+1 singular points \xi_i \Rightarrow up to r^{d+1} tuples \mathbf{u} r local exponential parts at each \xi_i
```

• There is a faster algorithm that avoids this explosion

[van Hoeij 1997]

- A hyperexponential solution of L gives a first-order right-hand factor.
 Then divide and continue looking for solutions!
- Right-hand factors of arbitrary order reduce to first-order factors of auxiliary equations