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Introduction

In this lecture, K is an effective field of characteristic zero.

(Problem. Given a differential equation
ar(x)yM+ -+ ar(x) y'(x) + ag(x) y(x) =0, ai € K[x],
(or a system Y'(x) = A(x) Y(x)), compute its...
a) formal series solutions y € K[[x]],
b) polynomial solutions y € K[x],

¢) rational solutions y € K(x),

d) generalized series solutions,

\e) hyperexponential solutions.

Operator notation:

ar()y 4+ @)y () +a)y(x)=0 & (a(x) D"+ +ai(x) D +1)(y) =0




1 Differential opearators as skew polynomials



Differential operators as skew polynomials

Algebraic framework for working with operators f— (x+— 3. ai(x) fW(x))

(Deﬁnition.
1K<x><D>={Z ai(x) D' ‘ ;;NH’{(X)}

i=0

with the usual addition of polynomials,
multiplication defined by D - x=x-D + 1 and linearity.

\ Alt: A/(A(Dx—xD—1) A) where A =ring of noncommutative polynomials in D over K(x) )

Exercise.
e ComputeD (xD —1)

e Interpret in terms of the solutions of y’=0, xy’=y, and y”" =0
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Skew Euclidean structure (Ore 1933, .|

¢ Euclidean right division:

L=QP+R with order(R) < order(P)
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¢ Euclidean right division:
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o Greatest common right divisor: (+» common solutions)
Li=Q:1G .
with G of max order
{ L2=0Q2G

e Least common left multiple: (<= closure by sum)

U;Li=UsLy=M of min order
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¢ Euclidean right division:

L=QP+R with order(R) < order(P)

o Greatest common right divisor: (+» common solutions)
Li=Q:1G .
with G of max order
{ L2=0Q2G

Least common left multiple: (<= closure by sum)
Ui Li=UsLe=M of min order
e Non-commutative Euclidean algorithm

Annihilating (left) ideal:

Ann(f) ={L| L(f) =0}
=K(x)(D)G where G=minimal annihilator of f



Recurrence operators as skew polynomials

(Deﬁnition.
s ={Snwst | 1% )
i=0

with the usual addition of polynomials,
\ multiplication defined by S-n=(n+1) - S and linearity.

e Also a skew Euclidean ring



Recurrence operators as skew polynomials

(Deﬁnition.

1K<n><s>={z bi(n) St ‘ ;feﬂ}((n)}
i=0

with the usual addition of polynomials,
\ multiplication defined by S-n=(n+1) - S and linearity.

e Also a skew Euclidean ring

e Diff. eq. < rec. correspondance:

Kx,x (D) =~ KMn[]S,S™1) bY{S:?nl-H)s.



Recurrence operators as skew polynomials

(Deﬁnition.

1K<n><s>={z bi(n) St ‘ ;feﬂ}((n)}
i=0

with the usual addition of polynomials,
\ multiplication defined by S-n=(n+1) - S and linearity.

e Also a skew Euclidean ring

e Diff. eq. < rec. correspondance:

Kx,x (D) =~ KMn[]S,S™1) bY{S:?nl-H)s.



2 Power series solutions



Singular points

L=a;D"+---4+a1D+ay

Definition. A point & € K is called
e an ordinary point of L if a.(&) #0,

e asingular point of L otherwise.




Singular points

L=a;D"+---4+a1D+ay

Definition. A point & € K is called
e an ordinary point of L if a.(&) #0,

e asingular point of L otherwise.

Theorem. If K= C and £ is an ordinary point, the space of analytic solutions at £ has
dimension r and any solution y is charaterized by initial values y (&), ...,y Y(&).

Corollary. If K = C and 0 is an ordinary point, r linearly independent solutions in C[[x]].

(computable using the associated recurrence)



Singular points

L=a;D"+---4+a1D+ay

Definition. A point & € K is called
e an ordinary point of L if a.(&) #0,

e asingular point of L otherwise.

Theorem. If K= C and £ is an ordinary point, the space of analytic solutions at £ has
dimension r and any solution y is charaterized by initial values y (&), ...,y Y(&).
Corollary. If K = C and 0 is an ordinary point, r linearly independent solutions in C[[x]].

(computable using the associated recurrence)

Question. Compute a basis of solutions in K[[x]] or IK((x)) (Laurent series)
e even when 0 is a singular point,

o for general K with char K=0



Formal Laurent series

Definition. We denote

K((x) = | {Z -~

noEZ (n=ng

une]K}.

The elements of IK((x)) are called formal Laurent series.

e Warning: C((x)) # Laurent series from analysis (even when convergent).
In complex analysis, Laurent series are double-sided: - unx".
But formal double-sided series do not form a ring!

e K((x)) is the field of fractions of K[[x]].

e Rational functions in IK(x) can be expanded in formal Laurent series at any point of IK.



The Euler derivative

(Lemma. Let0=xD.
Any differential operator

L=ay(x)D"+ -+ ai(x) D+ ap(x) € K[x](D)
can be written

L=x"%[a,(x) 0"+ --- +ai(x) 0+ ao(x)], aicK[x]

Gor some k € N. i

Proof. Substitute x ! 8 for D and clear denominators.

(Alternatively, perform repeated right Euclidean divisions by 6.)

Remark. [ and [ have the same solutions.



Laurent series solutions and recurrences 10

ForyeK((x)), define (Yn)nez by vy(x)= Z Ynx™ (Thus y,, =0 for n < 0.)
nez
(Proposition. Let © =xD. The series y € K((x)) is solution to [6: y(x) — xy'(x)]\

ar(x) 0"+ - 4 ai(x) 0 + ag(x)

if and only if the sequence (yn)nez is solution to [S7% (W) nez — (Un—1)nezl
R=a(S7Hm"+ - +ai(SHn+ap(S™).
L (57 (57 n -+ (S ) )
Proof. Substitute and compare coefficients. O

Notation. Given R as above, we write
S®R=qop(n) —qi(m)S~t—--- —qg(n)S~s

with & € Z chosen so that q¢ % 0.



Solutions of singular recurrences H

ez, qom)yn—aqi(m)yn-1— - —qs(n)yn—s=0



Solutions of singular recurrences H

ez, qom)yn—aqi(m)yn-1— - —qs(n)yn—s=0

At a singular index (= root of qo):

qO(n_Q)Un—Q = ql(n_Q)yn—Zi"‘"'+qs(n_2)yn—2—s
qO(n_l)Un—l = ql(n_l)yn—2+" +q$(n_1)yn—1—s
0yn = qi(n)  Yn—1+-+4sM)  Yn—s
qO(n+1)yn+1 = ql(n+1)yn +-- +qs(n+1)yn+173
qO(n+2)yn+2 = ql(n+2)yn+1+" +qs(n+2)yn+273




Solutions of singular recurrences H

VnezZ, dqo(n)yn—di(n)yn-1— - —ds(n)yn—s=0
At a singular index (= root of qo):
QoM =2 Un> = QN —2)Yn 5+ +du(N =2 yn >, free choice of
dom =1 yn-1 = i —=Dyn 2+ +dsm—1)yn -1 - L
Oyn = q1(n)  yn—at--+ds(m)  Yns — extra linear constraint
qo(n+1)yn+1 = ql(n+1)yn + - +qs(n+1)yn+lfs On( )
doM+2)Uns2 = G+ Ynii+ - +ds(M+2) Ynias Siseo




Solutions of singular recurrences H

ez, qom)yn—dqi(M)Yn-1—---—ds(n)yn—s=0
At a singular index (= root of qo):
Go(n—2)Un-2 = Q1N —2)Yn_st - +as(M—2)Yn 2 s = I
qO(n_l)Un—l = ql(n_l)yn—2+ . +q$(n_1)yn—1—s Yn
Oyn = qi(n)  Yn-1t - +ds(M)  Yn—s — extra linear constraint
qO(n+1)yn+1 = ql(n+1)yn + - +qs(n+1)yn+173 01‘1( )
doM+2)Untz = G(+2)Ynsr+ - +ds(M+2)Yntas Siseo
Observations.

e For a solution (yn)nez=1(...,0,0,0, yn ,UN+1,UN+2,-..) With yn #0 to exist,
N must be a root of qq.

e A partial solution (yn)n<n with N > max {roots of qo in Z}
extends to a unique solution (Yn)nez.



Solutions of singular recurrences 2

Lemma. Let (yn)nez be a solution to
do(M)Yn=d1(M) Yn-1+ -+ ds(n) Yn—s.
Assume that there exists an integer N such that y, =0 for all n <N.

Then the largest N with this property is a root of qp.

Exercise. Find the dimension of the space of solutions in QZ of
M—1)(Nn—2)upn=un_1+(M—2)un_o

that are ultimately zero as n — —oo.




An exercise

13

Exercise. Find the dimension of the space of solutions in Q7 of
MmM=-—1)(n—2)upn=un—1+(M—2)un_2

that are ultimately zero as n — —oc.

2LL()

2113

U_1
Uo
Uy
U2

2 U_o
Uu_1

0 Uo
Uy



An exercise B

Exercise. Find the dimension of the space of solutions in Q7 of
MmM=-—1)(n—2)upn=un—1+(M—2)un_2

that are ultimately zero as n — —oc.

Solution. The first nonzero term of such a solution
must be 1y or us.

(m=0) 2up = U1 — 2u_9
Evaluating the equation at n =2 yields u; =0. (n=1) 0 = uw — u.
In contrast, starting from any value of uy, (n=2) 0 =wm + Ow
one can define a solution with support C{2,3,...}. (n=3) 2uz = Uz + W

The dimension is 1.
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(
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In contrast, starting from any value of uy, (n=2) 0 =wm + Ow
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The dimension is 1.
Remark. This is less than
e the order of the recurrence,

e the number of integer roots of qg



An exercise B

Exercise. Find the dimension of the space of solutions in Q7 of
MmM=-—1)(n—2)upn=un—1+(M—2)un_2

that are ultimately zero as n — —oc.

Solution. The first nonzero term of such a solution

must be 1y or us. :
n=0) 2up = U1 — 2u_9

Evaluating the equation at n =2 yields u; =0. En: 1) 0 = uw — u.
In contrast, starting from any value of uy, (n=2) 0 =w + Ouw
one can define a solution with support C{2,3,...}. (n=3) 2uz = uz + W
The dimension is 1. :

Remark. This is less than Remark. The dimension could also be larger

e the order of the recurrence, than the order: consider

e the number of integer roots of do nm-1un=n—1)un1.



Back to differential equations 1

L=ay(x)0"+ -+ ao(x) — R = aT(S—l)nT+---~|—d0(S‘1)
= sfé(qo(n)_..._qs(n)sfs)

(Deﬁnition. The polynomial qq is called the indicial polynomial of L at 0. )

The polynomial obtained in the same way after x < & + x is called the indicial polynomial at &. )

C’roposition. The valuation of any solutiony € IK((x)) of L(y) = 0is aroot of the indicialx

polynomial at 0. y




Back to differential equations 1

L=ay(x)0"+ -+ ap(x) — R = aT(S—l)nT+---~|—a0(S‘1)
= sfé(qo(n)_..._qs(n)gfs

S

(Deﬁnition. The polynomial qq is called the indicial polynomial of L at 0.

The polynomial obtained in the same way after x < & + x is called the indicial polynomial at &.

~/

Proposition. The valuation of any solutiony € IK((x)) of L(y) = 0 is aroot of the indicial
polynomial at 0.

3

—

(Corollary. The space of solutions of L in IK((x)) has dimension <.

Proof. e We can echelonize a basis so that its elements have distinct valuations.

e degn(Sn)=degn((n+1)S) so degn(R) =7, and in particular deg qo < 7. O
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Remark. deg qo can be <, and the dimension can be < #integer roots of qg
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Computing a basis of formal Laurent series solutions

L:flT(X) 9T+'-'+(~10(X) — R
(deg ai< d)

a(STHn "+ +ag(STH
S7(qo(n) — -+ — qs(n) S7%)



Computing a basis of formal Laurent series solutions

L=an(x)0"+ --- + do(x) - R = a{(S™H)m "+ - +ag(S™H
(deg ai< d) = S7%(qo(n) — -+ —qs(n) S7%)

Idea. Let A, p be the smallest/largest root of qq in Z.

e Make an ansatz y(x) =yax* + - - - +yux*+ O(x*1), plug into the equation:

e Solve the resulting linear system

For solutions in K[[x]]: same but restrict A, i to N.



Computing a basis of formal Laurent series solutions

L=a(x)0"+ -+ ap(x) — R = aT(S—l)nUr "'+ao(s_1)
(deg di< d) = S7¥(qgo(n) — - —qs(n) S7°)
Idea. Let A, p be the smallest/largest root of qq in Z.

e Make an ansatz y(x) =yax* + - - - +yux*+ O(x*1), plug into the equation:

L(y)(x) ZUX)\—FUXM_l +Ux”*d_1 +O(xHt9)

——
. . . partial solutions are guaranteed
linear expressions m ya, ..., Yu

to extend so as to make this zero

e Solve the resulting linear system

For solutions in K[[x]]: same but restrict A, i to N.



Computing a basis of formal Laurent series solutions

L=a(x)0"+ -+ ap(x) — R = aT(S—l)nUr "'+ao(s_1)
(deg di< d) = S7¥(qgo(n) — - —qs(n) S7°)
Idea. Let A, p be the smallest/largest root of qq in Z.

e Make an ansatz y(x) =yax* + - - - +yux*+ O(x*1), plug into the equation:

L(y)(x) ZUX)\—FUXM_l +Ux”*d_1 +O(xHt9)

——
. . . partial solutions are guaranteed
linear expressions m ya, ..., Yu

to extend so as to make this zero

e Solve the resulting linear system

For solutions in K[[x]]: same but restrict A, i to N.

Limitation. The dimension p — A 4 1 can be exponential in the bit size of the input.
For example the solutions of x?y”(x) = 999999 x y’(x) are spanned by 1 and x10°,



Computing formal series solutions by recurrence 10

(Algorithm (sketch). Input: L, N Output: a basis of Sol(L, K[[x]]) to precision N )
1. Convert L to a recurrence. Let g be the indicial polynomial.
2. Let A\ <Ay < -+ - <A be the roots of qgin N. m < diff. eq. order
3. Forn=A;, A1 +1,...,max (N, Ap): note the max
a. If n = Ay for some k:
i. Set u, to a new indeterminate Cy.
ii. Evaluate the recurrence at n, record the resulting relation on previous Cy.

b. Otherwise compute u, using the recurrence.

4. Solve the linear system on Cy, ..., Cy, consisting of the collected relations .

-

Even better: use fast algorithms (baby steps-giant steps, binary splitting)
to “jump” from one singular index to the next.

Remark: the Cy that remain free after solving play the role of generalized initial values



The case of ordinary points

17

Remark. If 0 is an ordinary point, just like in the analytic case
e the space of power series solutions has dimension exactly r, and

e there exists a basis of solutions with valuations 0,1, ...,r— 1.




The case of ordinary points H

Remark. If 0 is an ordinary point, just like in the analytic case
e the space of power series solutions has dimension exactly r, and

e there exists a basis of solutions with valuations 0,1, ...,r— 1.

Proof sketch. One can check that the rec. obtained by L(x, D) ~ L(x,8) ~ R(n,S~!) has
the form

ar(0) n(n—1)---Mm—1+1) up = [poly(n)] (n—=1) - (n—=1+1) un
[poly(m)] (n—2) - (m—1+1) Un_2

[poly(n)] (n—7+1) un_rp1

+ 4+ + +



The case of ordinary points H

Remark. If 0 is an ordinary point, just like in the analytic case
e the space of power series solutions has dimension exactly r, and

e there exists a basis of solutions with valuations 0,1, ...,r— 1.

Proof sketch. One can check that the rec. obtained by L(x, D) ~ L(x,8) ~ R(n,S~!) has
the form

ar(0) n(n=1)---(n—r+1) un = [poly(n)] (n—1)---(m—r+1) un_
+ [poly(n)] (n—2)---(n—1+1) un_o
+ [poly(n)] (m—71+1) Un_ry1

e Since a,(0)#0 , the indicial polynomial is a,(0) n(n—1)--- (n—r+1) .
This shows that the only possible valuations are 0,...,r—1.



The case of ordinary points H

Remark. If 0 is an ordinary point, just like in the analytic case
e the space of power series solutions has dimension exactly r, and

e there exists a basis of solutions with valuations 0,1, ...,r— 1.

Proof sketch. One can check that the rec. obtained by L(x, D) ~ L(x,8) ~ R(n,S~!) has
the form

ar(0) n(n=1)---(n—r+1) un = [poly(n)] (n—1)---(m—r+1) un_
+ [poly(n)] (n—2)---(n—1+1) un_o
+ [poly(n)] (m—71+1) Un_ry1

e Since a,(0)#0 , the indicial polynomial is a,(0) n(n—1)--- (n—r+1) .
This shows that the only possible valuations are 0,...,r—1.

e All partial solutions (yo, ..., yk) for k <t — 1 extend thanks to the shape of the rths. O



A paradox?

Remark.

L nonsingular of order r and deg d

V= Solgp(L)

dimV=r

18

Rof order s <t +d
usually s #r



A paradox? °
Remark.
L nonsingular of order rand degd < Rof order s <t +d
usually s #r
V:SOIIK[[XH(L) > W={(yn) € K% with Yn=0for n<0}
dimV=r dim W unrelated to s

(but related to r via
the indicial polynomial)



3 Polynomial and rational solutions



Introduction 20

ay 4t ai(x)y +ay=0
deg(ai) <d

Suppose we had a bound B on the degrees of polynomial solutions.

Make an ansatz: y(x)=co+cix+---+cp_1xB71,

plug into the equation:

ar ()Yt agx)y(x) =[]+ [ ] x+[.. ] xd+B2
~ =~ =~
linear expressions in cy, . ..,cN—1

— B + d — 1 linear equations in B unknowns.

Questions. e Compute the degree bound

e Do better than B®



Finite-support solutions of recurrences -

A polynomial solutionisjust a power series solution that terminates
a solution with finite support of the associated recurrence.

Lemma. Consider the recurrence
VTLGZ, bs(n)y n+s + +b1(n)yn+1+b0(n)y n =0.
For a solution

(yn)nEZ: ( e ,UN—2)9N—1,UN)O) O>0) .. ) WlthUN #O

to exist, N must be a root of by.



Finite-support solutions of recurrences -

A polynomial solutionisjust a power series solution that terminates
a solution with finite support of the associated recurrence.

Lemma. Consider the recurrence

YneZ, b)Y+ +bi(n)ynsyr+bo(n)y, =0.
For a solution

(yn)nEZ: ( oy YN—2,UN-1, UN, O) 0) 0) oo ) Wlth UN 7é 0

to exist, N must be a root of by.

Remark. If now R =S7%(qo(
=SY (bo(

33

)= qi(m)S~'—--)  with qo#0
)+bi(n)S +--+) withbg#0,
for a solution
(yTl)TlEZ:(---O»O)Ovyﬂvye—i-l---»yh—l»yh»o)ovo»'--) with yﬂ»yh#o

to exist, one must have qo({) =bg(h) =0.



Degree bounds -

L=a.(x)0"+ -+ aop(x) — R = a(S™Hm"+ - 4+ag(S™H
= Sy (bo(n) + - —bs(n) SS)
v such that by £ 0

(Deﬁnition. The polynomial by is called the indicial polynomial at infinity of L. >

One can check that it is the indicial polynomial at 0 of the equation obtained by x < x ™.

@roposition. For any solution y € K[x] of L(y) =0, the degree of y is a root of by. )

Remark. Polynomial solutions can be large! Last week, we found a small diff. eq.
annihilating the dense polynomial (1 +x)2N (1 +x + x*)N.



From power series solutions to polynomial solutions

23

Lemma. Let L=a,(x) 0"+ --- 4 ap(x) with 0 an ordinary point. Let d = max; deg a;.
Let N > max {r — d — 1, all integer roots of the indicial polynomial at co of L}.

Then the solutions of L in K[x] are exactly its solutions }_~_ ynx™ € K[[x]] such that

YN+1=""=YN+a=0.




From power series solutions to polynomial solutions 23

Lemma. Let L=a,(x) 0"+ --- 4 ap(x) with 0 an ordinary point. Let d = max; deg a;.
Let N > max {r — d — 1, all integer roots of the indicial polynomial at co of L}.

Then the solutions of L in K[x] are exactly its solutions }_~_ ynx™ € K[[x]] such that

YN+1=""=YN+a=0.

Proof.
C. Any polynomial solution is also a power series solution.
By the degree bound, it has ynt+1 =" =yn+a=0.
D. The recurrence associated to L has order < d.
Since 0 is an ordinary point, its only possible singular indices are 0,1,... v —1.

Soyn+1=---=UNta=0impliesyn =0 forall n > N. O



From power series solutions to polynomial solutions 23

Lemma. Let L=a,(x) 0"+ --- 4 ap(x) with 0 an ordinary point. Let d = max; deg a;.
Let N > max {r — d — 1, all integer roots of the indicial polynomial at co of L}.

Then the solutions of L in K[x] are exactly its solutions }_~_ ynx™ € K[[x]] such that

YN+1=""=YN+a=0.

Proof.
C. Any polynomial solution is also a power series solution.
By the degree bound, it has ynt+1 =" =yn+a=0.
D. The recurrence associated to L has order < d.
Since 0 is an ordinary point, its only possible singular indices are 0,1,... v —1.

Soyn+1=---=UNta=0impliesyn =0 forall n > N. O

Exercise. What happens without the assumption that 0 is an ordinary point?



Polynomial solutions of differential equations

24

1. Shift x to reduce to the case where 0 is an ordinary point.

2. Let bg = indicial polynomial at oo of L.

5. Solve
woo Al
EANES UN+4a
(c1 - ¢r) : : =0.
L
UN+1 UN+a

X 6. Return {3 ciy¥| (c1,..., cy) €a basis of solutions of this system }.

(Algorithm. Input: L=ar(x) 0"+ - + ap(x) € K[x|(0) Output: a basis of Sol(L, ]K[X])\

3. If bg has no root in N, return &. cf. Lecture 11 — constrains IK
Otherwise let d = max;deg a; and N = max {r — d — 1, roots of by in N}.

4. Compute a basis y1, . .., yr of sol. in K[[x]] truncated to order N +d + 1.

J

Cost: O(rd N + poly(r, d)) ops



Polynomial solutions: Remarks

o Alternative method avoiding the shift:

Adapt the algorithm for series solutions at singular points

e Quick existence check for polynomial solutions when K = Q:
Compute the yﬂ +14+imodp for some prime p
using the baby steps-giant steps method from last week.

e More generally, one can compute the dimension, degrees and selected terms of a
basis of polynomial solutions without computing the solutions in expanded form.

(Baby steps-giant steps and/or binary splitting).

25



Rational solutions of differential equations 2

ary - +a(x)y’ +ay=0 (DEq)

Rational solutions reduce to polynomial solutions given a multiple of the denominator.



Rational solutions of differential equations 2

ary - +a(x)y’ +ay=0 (DEq)

Rational solutions reduce to polynomial solutions given a multiple of the denominator.

Observation 1. Any pole & € K of y must be a singular point.

Observation 2. If y has a pole of multiplicity m at & € KK, its series expansion provides
a solution in K((x — &)) of valuation m.



Rational solutions of differential equations 2

ary - +a(x)y’ +ay=0 (DEq)

Rational solutions reduce to polynomial solutions given a multiple of the denominator.

Observation 1. Any pole & € K of y must be a singular point.

Observation 2. If y has a pole of multiplicity m at & € KK, its series expansion provides
a solution in K((x — &)) of valuation m.

Proposition. For all ¢ € K such that a,(C) =0, let m, be the smallest root in Z— of the
indicial polynomial of (DEq) at C (if any, and m¢ = 0 otherwise).

Then the denominator of any rational solution of (DEq) is divisible by Q = H (x — )™M=
14

Better variant: attach indicial polynomials to factors of a, instead of roots to avoid working over K.



Rational solutions of differential equations 2

ary - +a(x)y’ +ay=0 (DEq)

Rational solutions reduce to polynomial solutions given a multiple of the denominator.

Observation 1. Any pole & € K of y must be a singular point.

Observation 2. If y has a pole of multiplicity m at & € KK, its series expansion provides
a solution in K((x — &)) of valuation m.

Proposition. For all ¢ € K such that a,(C) =0, let m, be the smallest root in Z— of the
indicial polynomial of (DEq) at C (if any, and m¢ = 0 otherwise).

Then the denominator of any rational solution of (DEq) is divisible by Q = H (x — )™M=
14

Better variant: attach indicial polynomials to factors of a, instead of roots to avoid working over K.

Algorithm. Compute Q as above, change y to K, basis of solutions w € K|[x].

Q



An exercise

Exercise. Consider the differential equation

(x =D y"(x) + (=x+3)y'(x) —y(x) =0.

o0

1. Lety(x) = Z Yn (x — 1)™be a solution of (E). Set yn =0 for n < —N.

n=-—N
Show that the sequence (yn)nez satisfies

ez, m+1l)m+2)ynri=mn+1)yn

2. Find all rational solutions of (E).

27
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4 Differential systems



From differential systems to scalar equations *

Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
K'Y = K'Y



From differential systems to scalar equations *

Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
Y = K'Y
(XY

K-
K-Y) = K'Y+KY



From differential systems to scalar equations *

Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
Y = K'Y
(X-Y) = K'Y+ KY’
= (K'+KA) Y

K-
K-



From differential systems to scalar equations *

Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
K'Y = K'Y
(X-Y) = K'Y4+KY’
= (K'+KA) Y
(KY)” = (O1+0,A) Y



From differential systems to scalar equations *

Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
K'Y = K'Y
(X-Y) = K'Y4+KY’
= (K'+KA) Y
(KY)” = (O1+0,A) Y

K-V = (011 +0,1A) Y



From differential systems to scalar equations *

Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
K

(K'+ KA)
(O1+01A)

(‘:’;‘—1 + Dr—l A)



From differential systems to scalar equations
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Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
K

(K'+KA) T+ 1 vectors
(O +0,A) in dimension r

(‘:’;‘—1 + Dr—l A)



From differential systems to scalar equations *

Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
K

(K'+KA) T+ 1 vectors

... M=
(O1+01A) in dimensiont @0 KY+- 4 ar (KY)=0

(‘:’;‘—1 + Dr—l A)



From differential systems to scalar equations *

Proposition. Let Y be a solution of the system
Y'(x)=A(x) Y(x), A eK(x)™".

For any vector K € K(x)", the function K(x) Y(x) satisfies a scalar differential equation
of order < r with coefficients in K(x).

Corollary. The entries of Y are D-finite.

Proof.
K

(K'+KA) T+ 1 vectors

... M=
(O1+01A) in dimensiont @0 KY+- 4 ar (KY)=0

(‘:’;‘—1 + Dr—l A)



Solutions of differential systems %

Assume that there was no relation between K, K’ + KA ... before the (v + 1)th element
of the sequence.



Solutions of differential systems %

Assume that there was no relation between K, K’ + KA ... before the (v + 1)th element
of the sequence.

After solving the resulting scalar equation L(w) =0:

— K — K.Y
— K'+KA — (K-Y)’
— O'+0A — Yy [=] K-V
— O’'+0A — (K-Y)=D
[ ——

€K (x)™T, invertible known



Solutions of differential systems %

Assume that there was no relation between K, K’ + KA ... before the (v + 1)th element
of the sequence.

After solving the resulting scalar equation L(w) =0:

- K — K.Y
— K'+KA — (K-Y)’
— O'+0A — vy |=] K-y
- D/+DA —_— (K'Y)(Tfl)

—_—
€K (x)™", invertible known

For any rational solution of Y/ = A'Y, the function w = K Yis a rational solution of L, so we
can compute the rational solutions of Y= A'Y from those of L.



The cyclic vector lemma

31

Theorem. There exists a vector K € K(x)" such that the vectors [Cope 1936]
K, VK=K'+KA, ..., V™IK
are linearly independent over K(x).
Proof.
O

Remark. The proof gives an algorithm to compute a suitable K.



The cyclic vector lemma .

Theorem. There exists a vector K € K(x)" such that the vectors [Cope 1936]
K, VK=K +KA, ..., VIK

are linearly independent over K(x).

Proof. For all i, the vector VK is of the form

ViK=K® 4 k(-1 Qii—1+--+KQip where Qij=poly(A,A',...) e K(x)™".

Remark. The proof gives an algorithm to compute a suitable K.



The cyclic vector lemma .

Theorem. There exists a vector K € K(x)" such that the vectors [Cope 1936]
K, VK=K +KA, ..., VIK

are linearly independent over K(x).

Proof. For all i, the vector VK is of the form
ViK=K® 4+ k(-1 Qii—1+ - +KQip where Qij=poly(A,A',...) e K(x)™".
Let xo € IK\ {poles of A}. Define vy, ...,v,—1 € K" by
vi=ei—Vvi—1Qii—1(x0) + - -+ +vo Qi,0(x0), (ei) = canonical basis of K(x)".

Finally choose K € K[x] such that K(xo) =vp, ..., KT (xg) =v,_1.

Remark. The proof gives an algorithm to compute a suitable K.



The cyclic vector lemma .

Theorem. There exists a vector K € K(x)" such that the vectors [Cope 1936]
K, VK=K +KA, ..., VIK

are linearly independent over K(x).

Proof. For all i, the vector VK is of the form
ViK=K® 4+ k(-1 Qii—1+ - +KQip where Qij=poly(A,A',...) e K(x)™".
Let xo € IK\ {poles of A}. Define vy, ...,v,—1 € K" by
vi=ei—Vvi—1Qii—1(x0) + - -+ +vo Qi,0(x0), (ei) = canonical basis of K(x)".
Finally choose K € KK[x] such that K(xg) = vy, ..., K(r’l)(xo) =Vr_1.
Then V'K (xo) = e; for 0 <i< . In particular the VK are linearly independent. O

Remark. The proof gives an algorithm to compute a suitable K.



5 Generalized series solutions



Introduction 33

L=a;(x)D"+ - -+ ai(x) D+ ap(x)
qo = indicial polynomial at 0
We have seen that, when 0 is a singular point:
e degqggcanbe <,

e dim ker|jy L can be < #{integer roots of qo}

(Question. Define and compute a “full” basis of “series” solutions at a singular point>




Non-integer exponents >

When qo(A) =0 for some A ¢ Z, look for solutions x f(x) with f(x) € K[[x]].
Examples.
e [=2(x—1)xD+x+1 — qo(A)=2A-1
solution: y(x) =x"2 (1+x+x2+--+)

Remark. Here x* with A € K denotes some algebraic object satisfying the “usual relations”

E.g., start with IK((x))[ea]rek, quotient by the relations eg =1, ex 1 =X e), and e) 4, =€) ey, and set
ej = A ex_1 to obtain a differential ring containing IK((x)).



Non-integer exponents >

When qo(A) =0 for some A ¢ Z, look for solutions x f(x) with f(x) € K[[x]].
Examples.
e [=2(x—1)xD+x+1 — qo(A)=2A-1
solution: y(x) =x"/2 (1 +x+x24---)
e [=02-2=x?D?+xD—-1 — qo(A)=A?-2 K

Il
O

solutions: x*V2

Remark. Here x* with A € K denotes some algebraic object satisfying the “usual relations”

E.g., start with IK((x))[ea]rek, quotient by the relations eg =1, ex 1 =X e), and e) 4, =€) ey, and set
ej = A ex_1 to obtain a differential ring containing IK((x)).



Non-integer exponents >

When qo(A) =0 for some A ¢ Z, look for solutions x f(x) with f(x) € K[[x]].
Examples.
e [=2(x—1)xD+x+1 — qo(A)=2A-1
solution: y(x) =x"/2 (1 +x+x24---)
e [=02-2=x?D?+xD—-1 — qo(A)=A?-2 K

Il
O

solutions: x*V2
e L=x’D?24+xD—-1+x — qoA)=A?>-2 K

solutions: xiﬁ(l +%(1:|:\/§)x+2i8(5¢3\/§)x2+...)

I
o

Remark. Here x* with A € K denotes some algebraic object satisfying the “usual relations”

E.g., start with IK((x))[ea]rek, quotient by the relations eg =1, ex 1 =X e), and e) 4, =€) ey, and set
ej = A ex_1 to obtain a differential ring containing IK((x)).



Non-integer exponents >

When qo(A) =0 for some A ¢ Z, look for solutions x f(x) with f(x) € K[[x]].
Examples.
e [=2(x—1)xD+x+1 — qo(A)=2A-1
solution: y(x) =x"/2 (1 +x+x24---)
e [=02-2=x?D?+xD—-1 — qo(A)=A?-2 K

Il
O

solutions: x*V2
e L=x’D?24+xD—-1+x — qoA)=A?>-2 K
solutions:xiﬁ(l+%(1:|:\/§)x+2i8(5¢3\/§)X2+...)

I
o

Algorithm. Same as for Laurent series.

Remark. Here x* with A € K denotes some algebraic object satisfying the “usual relations”

E.g., start with IK((x))[ea]rek, quotient by the relations eg =1, ex 1 =X e), and e) 4, =€) ey, and set
ej = A ex_1 to obtain a differential ring containing IK((x)).



Multiple indicial roots %

[Frobenius 1873, ...]
To recover deg g linearly independent solutions,

consider solutions x* (fo(x) + f1(x) logx + - - - + fr_1(x) log(x)""!).

Again, log(x) is just a notation for an element of a differential extension with log’(x) =1/x.
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To recover deg g linearly independent solutions,
consider solutions x* (fo(x) + f1(x) logx + - - - + fr_1(x) log(x)""!).

Again, log(x) is just a notation for an element of a differential extension with log’(x) =1/x.

Examples.
e L=02=x?D?+xD — qo(A)=A?

solutions spanned by 1 and log(x)



Multiple indicial roots %
[Frobenius 1873, ...]

To recover deg g linearly independent solutions,
consider solutions x* (fo(x) + f1(x) logx + - - - + fr_1(x) log(x)""!).

Again, log(x) is just a notation for an element of a differential extension with log’(x) =1/x.

Examples.
e L=02=x?D?+xD — qo(A)=A?
solutions spanned by 1 and log(x)

e L=xD?-D+1 — qoA)=A(A-2) recn(n—2)Yyn=Yyn-1

solutions: x? — %X?’ 4+
(1+x—gx3+ '-')—l—(—%xz—i-%x?q_ - log(x)
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Multiple indicial roots
[Frobenius 1873, ...]

To recover deg g linearly independent solutions,
consider solutions x* (fo(x) + f1(x) logx + - - - + fr_1(x) log(x)""!).

Again, log(x) is just a notation for an element of a differential extension with log’(x) =1/x.

Examples.
e L=02=x?D?+xD — qo(A)=A?
solutions spanned by 1 and log(x)

e L=xD?-D+1 — qoA)=A(A-2) recn(n—2)Yyn=Yyn-1

solutions: x? — %X?’ 4+
(1+x—gx3+ '-')—l—(—%xz—i-%x?q_ - log(x)

Algorithm. Similar as before with structured systems of recurrences.

When hitting a singular index, insert a new log(x)* to gain a degree of freedom.



Multiple indicial roots

y(x) = Z Un x4 Z vn x"log(x)

36
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Multiple indicial roots

y(x) = Zunx“—i—z vn x"log(x
y'(x) = Znu X" 1—!—2 nvn x“ Hog(x)

+Zv xn1

L=xD?—
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Multiple indicial roots

y(x) = Zunx“—i—z vn x"log(x
y'(x) = Znu X" 1—1—2 nvnxn Hog(x) +Zv xn—1
= > (mun+tvn) X" 1) nvy x"Hog(x)

L=xD?—

36
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Multiple indicial roots

y(x) = Z unx“—i—z vn x"log(x

y'(x) = Znu X" 1—|—Z nvnxTL Hog(x)

L=xD?—

+Zv xn1

= Z (Mun+vn) x™ 1+Z nvy x™ IIOg( )

y'(x) = Z [(M—1) (Nun+vn) +nVy
(nQ—n)un‘—it@n—l)vn

X" 2+Z n—1) nv, x" ?log(x)

36

D+1
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L=xD?-D+1
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y(x) = Zunxn—i-z vn x"log(x
y'(x) = Znu X" 1—|—Z nvnxTL Hog(x)
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REC,
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Regular singular points >

Definition. A singular point where the indicial polynomial has degree r
is called a regular singular point.

(Proposition. LetL € K(x)(D) be an operator of order r with a regular singular point at 0.)

Then L admits r linearly independent formal solutions of the form

x? (fo(x) +fi(x)logx + -+ + fk(x) log(x)K), fre KOA)[[x]],

\with K <rand A among the roots of the indicial polynomial.

Proposition. When K = C, the fy are convergent power series.

Le., one obtains a basis of solutions analytic in {|z| < p}\ (—p, 0] for some p > 0.




Irregular singular points %

When deg qo <1, several new phenomena.

ﬁl"heorem. Assume that K is algebraically closed. [Fabry 1885, ]\
Any linear differential equation of order r with coefficients in K((x))
admits r linearly independent formal solutions of the form
exp (WX‘W +o 1 fl/p) X (fo(xl/p) o o (XP) 10g(X)“1)
therep €N, vi,A€K, and fj € K[[x]]. )

The series fy are typically divergent.

When K = C, these expansions can still be interpreted
as asymptotic expansions of analytic solutions.



Newton polygons

Goal. Find the leading term inside the exponential.

Suppose y(x) = ¥ "t (14 0x7)

Then y'(x) =

39
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Goal. Find the leading term inside the exponential. L= ai;¥D!
)
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Then y’(x) = —yo‘xfcf1 eVX_UJF"'.X}‘ .(1_|_...)

-|—eVX76+"'-7\X}\_1 '(1+‘”)
—|-eVX_G+""X}\ '(DXTfl +)



Newton polygons

Goal. Find the leading term inside the exponential.

Suppose

Then

eV T XA (14 0x7)

_’Yo'xio_il eYX_UJr-".X}‘ (1+

+eyxig+"'.xx>\_1 (1+)
+e.yx—c'+...'x}\ '(DXTfl +

_Yo-eyx*“-&----x)\—c—l (1+ )

)

)

39

L= E aij XjDiL
)

o>0



Newton polygons
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Newton polygons

Goal. Find the leading term inside the exponential.

Suppose

Then

XDt y(x)

eV T XA (14 0x7)
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Newton polygons
Goal. Find the leading term inside the exponential.
Suppose y(x) = ¥ "t (14 0x7)

Then y’(x) = —yo‘xfcf1 eVX_UJF"'.X}‘ .(1_|_...)
Fer T AT (1)
+eyx—a+... 'X}\ . (DXTfl + )

= —*}/o‘eYX*G—H“X)\—G—l (1 4. )
X Dhy(x) = (—yo)ix—ilo=D .eYX_l/"+---X7\(1+...)

Fix 0. To have L-y =0, the leading x)~%°~1) (smallest exponent)

must be reached at lest twice when considering all a; ;% D' y(x):

ji—l(oc—1)=ja—1i2(0c—1) = o— - .
12—

1232_31
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Newton polygons %

Goal. Find the leading term inside the exponential. L= ai;¥D!
)

Suppose yx) = et xA (14 0% o>0

Then y’(x) = —yo‘xfcf1 eVX_UJF"'.X}‘ .(1_|_...)

-|—eVX76+"'-7\X}\_1 '(1+‘”)
—|-eVX_G+""X}\ '(DXTfl +)

= —yo‘er*G—P“X)\—G—l(l_{__”)
WDLy(x) = (—yo)ixiie=D e P (1)

Fix 0. To have L-y =0, the leading x)~*°~1) (smallest exponent)
must be reached at lest twice when considering all a; ;% D' y(x):
jl—il(ﬁ—l):jz—iz((i—l) = U—lzw

12—

Additionally the corresponding a; j (—y 0) must sum to zero (characteristic equation).



Computing all generalized series solutions %

y(x)= exp< Yex P 4 - +Y1X_1/p> X (fo(xl/p) o froa () log(x)r_l)

To compute a basis of generalized series solutions:
e Compute solutions with no exponential factor as in the regular case
¢ Find candidates for —{/p using the Newton polygon

¢ Find candidates for vy, using the characteristic equation

e For each candidate, write y(x) = ey g (x}/P) and recurse



6 Bonus:
Hyperexponential solutions,
First-order factors



Hyperexponential functions

42

y'(x)
y(x)

Here “function” = analytic function over C, or more generally element of a differential extension of IK(x).

Definition. A “function” y(x) is called hyperexponential over K when

e K(x).

A2 T, exVItx

Examples: ——, il

Goal. Given L, compute all hyperexponential solutions.



Hyperexponential functions 2

Definition. A “function” y(x) is called hyperexponential over K when y ) e K(x).

y(x)

Here “function” = analytic function over C, or more generally element of a differential extension of IK(x).

X342 V1+x
Examples: ——, V1+x, e"x2—+1
Closed form: 61, 8, 5
—_— L] ’2 ... 2’1 DECEEY
y(x) = eXp/[X—E1+(XE1)2+ +t—5

_ erat(x) (X - E.l) Bi,1 (X _ 52) B21...

Goal. Given L, compute all hyperexponential solutions.



Hyperexponential functions 2

Definition. A “function” y(x) is called hyperexponential over K when y ) e K(x).

y(x)

Here “function” = analytic function over C, or more generally element of a differential extension of IK(x).

X342 \ _1 +x
Examples: ———, V1+x, e* 2+ 1
Closed form: i1 B12 B
. > L2 ... 2’1 ...
y(x) = GXP/[X_alJF(xal)?JF e

_ erat(x) (X - E.l) Bi,1 (X _ 52) B21...

Goal. Given L, compute all hyperexponential solutions.

Note that the set of hyperexponential solutions is not a vector space!



Hyperexponential functions
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Definition. A “function” y(x) is called hyperexponential over K when v )

y(x)

Here “function” = analytic function over C, or more generally element of a differential extension of IK(x).

e K(x).

X342 \ _1 +x
Examples: ———, V1+x, e* 2+ 1
Closed form: i1 B12 B
. > L2 ... 2’1 ...
y(x) = GXP/[X_alJF(xal)?JF e

_ erat(x) (X - E.l) Bi,1 (X _ 52) B21...

Goal. Given L, compute all hyperexponential solutions.

Note that the set of hyperexponential solutions is not a vector space!

L is right-divisible by D —y’ /y.

(Proposition. A function y is a hyperexponential solution of a differential operator L ifj




Exponential parts

Consider an hyperexponential function

P1(x) Pa(x)

y(x) — e(X—El)ml (x—&g)M2

+--

(X— 51)61,1 (X _ 52)62,1 o
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Exponential parts

Consider an hyperexponential function

p1(x) pa(x) 4o
y(x) =eG-a™ (g™ (x — &1)Prr(x — &g) P21 ...,

At &
y(Eitz) = eriZ_miJr---Jrle*lZ(g,i,l (O+0z+--).

43



Exponential parts *

Consider an hyperexponential function

P1(x) Pa(x) +-
y(x) — e(X—El)ml (x—&g)M2

(x— Ep)PLr(x — Eg)B2a ..

At &
y(al+z) — eriz_mi+---+le’l ZBi,1 (D +dz+-- ) (*)

If L -y =0, this expansion must be among the generalized series solutions of L at &;.



Exponential parts *

Consider an hyperexponential function

P1(x) Pa(x) +-
y(x) — e(X—El)ml (x—&g)M2

(x— Ep)PLr(x — Eg)B2a ..
At &
y(al_’_z) — eriz_miJr---Jrle’l ZBi,1 (D +dz+-- ) (%)

If L -y =0, this expansion must be among the generalized series solutions of L at &;.

(Deﬁnition. We call: A

e local exponential parts of L at & the factors exp (v¢ 2Py 2V V) zMappearing
in generalized series solutions in z=x — §, considered up integer powers of z;

e local exponential part of y at & the corresponding factor in (x);

e global exponential part of y its equivalence class for the relation

ylwyzﬁgeﬂ((x).
Y2

.




44

The classical algorithm [Fabry 1885]

Idea: e the collection of local exponential parts of y at every ¢
determines its global exponential part;

e fory to be asolution of L,
the local exponential parts of y at every &
must be among those of L.



44

The classical algorithm [Fabry 1885]

Idea: e the collection of local exponential parts of y at every ¢
determines its global exponential part;

e fory to be asolution of L,
the local exponential parts of y at every &
must be among those of L.

(Algorithm. Input: L € K(x)(D) Output: The set of hyperexponential solutions of L)

1. Compute the singular points &g, ..., Eq€ KU {oo} of L
and the local exponential parts Ei, ..., Eir ateach &;

2. For each tuple u = (uy,...,uq) with uy <y
a. Let ey(x) be a representative of the global exponential part Eq ., - - - Eq .y
b. Write y(x) = e (x) y(x) in L -y =0; compute an operator L, annihilating y
c. Compute the space V,, of rational solutions of L,

3. Return | J,, eu(x) V.

-




Final remarks ®

Combinatorial explosion: L of order r and deg d

Up to d+ 1 singular points &; = up to rd+!

1 local exponential parts at each &;

tuples u

There is a faster algorithm that avoids this explosion [van Hoeij 1997]

A hyperexponential solution of L gives a first-order right-hand factor.

Then divide and continue looking for solutions!

Right-hand factors of arbitrary order
reduce to first-order factors of auxiliary equations
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