MPRI C-2-22 — Lecture 14

Computing terms of P-finite sequences
Marc Mezzarobba

January 27, 2025



Doctoral funding available

Group MAX team, Ecole polytechnique
Starting date  Fall 2025 (negotiable)

Topic Differential equations

From computational complexity and differential Galois theory
tolow-level implementation details depening on student interests

Advisors ].van der Hoeven + one of { G. Lecerf, M. Mezzarobba,
F. Ollivier, G. Pogudin }

Talk to us ASAP if interested — Tell your friends



1 Introduction



Reminders: D-finite series, P-finite sequences

ﬂl"heorem. Let f= Z fax™e K[[x]]. h
n=0
f is D-finite & (frn)nenis P-finite / P-recursive
< f satisfies a linear ODE & (fn) satisfies a linear recurrence
with coefficients in IK|x]| with coefficients in K[n|
< dim spang ) (f, f', f7,...) <o
\ > y
(Corollary. One can compute the first N terms of a D-finite series in O(N) ops. >

“ops” = operations in the base field K



Reminders: C-finite sequences

Definition. A sequence (u,) € KN is called C-finite when it satifies a linear recurrence

VneN, 1 upjps+Cs—1Unys—1+--+CouUn=0 with c¢; € K.

Theorem. One can compute the Nth term of a C-finite sequence
e in O(s%log(N)) ops by binary powering on the companion matrix,

e in O(M(s)log(N)) ops by binary powering modulo charpoly
or by repeated Graffe transforms.

Remarks.
e Over Z, all three methods take O(Mz(N)) bit operations.

e They do not work in the P-finite case.



Reminders: Binary splitting for hypergeometric sums

Definition. A (generalized) hypergeometric series is a power series whose coefficient
sequence satisfies a first-order recurrence relation with polynomial coefficients:

p(n)

:E unXx™ where un+1zmun, ug=1.

N-1
For p, q € Z[n| and x € QQ, one can compute Z U x™
n=0

in O(Mz(N log(N)?)) bit operations

by splitting 39" as 20 + 300 = (<% nn% i cg(:nl{,]:)) o

and computing the numerators & denominators recursively




C-Finite sequences: The direct algorithm over 7Z

Un+t+s+Cs—1Unts—1+

Un = odlpl(n) +

Direct algorithm: Ug = —(Cs—1Ug—1+ -+ +Coup)
Usr1 = —(Cs—1us +---Fcour)

Output size can reach Q(N?) for N terms
Q(N) for one term

-+ coun=0
-+ aftpi(n)

|un| g 2KTL



C-Finite sequences: The direct algorithm over 7Z

Untst+Cs—1Unts—1+ - +Coun=0

Un=oqp1(n)+--- + o px(n)

Direct algorithm: Us = —(Cs—1Us—1+ -+ CoUp) [un| < 2Kn
Usr1 = —(Cs—1us +---Fcour)
N-1
Bit operations: Z CMz(h,Kn) for a fixed rec.
n=s

Output size can reach Q(N?) for N terms
Q(N) for one term



C-Finite sequences: The direct algorithm over 7Z

Untst+Cs—1Unts—1+ - +Coun=0

Un=oqp1(n)+--- + o px(n)

Direct algorithm: Us = —(Cs—1Us—1+ -+ CoUp) [un| < 2Kn
Usy1 = _(Cs—lus +"’+C0u1)
N-1
Bit operations: Z CMzh,Kn) < ' w for a fixed rec.
n=s

Output size can reach Q(N?) for N terms
Q(N) for one term



C-Finite sequences: The direct algorithm over 7Z

Untst+Cs—1Unts—1+ - +Coun=0

Un=oqp1(n)+--- + o px(n)

Direct algorithm: Us = —(Cs—1Us—1+ -+ CoUp) [un| < 2Kn
Usr1 = —(Cs—1us +---Fcour)
N-1
Bit operations: Z CMzh,Kn) < ' w for a fixed rec.
n=s
= O(N?)

Output size can reach Q(N?) for N terms
Q(N) for one term



C-Finite sequences: The direct algorithm over 7Z

Untst+Cs—1Unts—1+ - +Coun=0

Un=oqp1(n)+--- + o px(n)
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C-finite sequences: Binary powering over 7Z

Proposition. Let (un)nen satisfy a linear recurrence with constant coefficients and unit
leading term. Assume 1= 1.

Given N € NN, one can compute uy in O(Mz(N)) bit operations.

Proof. Write

Un+1 1 Un
Unt2 | Un+1
. 1 .

Un +s —Cp —C1 -+ —Cs—1 Un4s—1
AELS*s

o |AM| <A™ < 25 for some K > 0.

e Cost of binary powering:

C-Mz(K)+ -+ C-Mz(F K) + C-Mz(5 K) =0(Mz(N)). O



C-finite sequences: Binary powering over 7Z

Proposition. Let (un)nen satisfy a linear recurrence with constant coefficients and unit
leading term. Assume 1= 1.

Given N € NN, one can compute uy in O(Mz(N)) bit operations.

Proof. Write

Un+1 1 Un
Un 42 Un+1
. - 1 .

Un +s —Cp —C1 -+ —Cs—1 Un4s—1
AELS*s

o |AM| <A™ < 25 for some K > 0.

e Cost of binary powering:

C-Mz(K)+ -+ C-Mz(F K) + C-Mz(5 K) =0(Mz(N)). O

Exercise. What is the complexity over @Q (i.e. for a non-unit leading term)?



Direct computation of N!

@lgorithm. Repeat upn=n-un_iforn=1,2,... N.
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o Arithmetic complexity: O(N) ops Optimal if computing 1!,..., N!



Direct computation of N!

@lgorithm. Repeat upn=n-un_iforn=1,2,... N.

o Arithmetic complexity: O(N) ops Optimal if computing 1!,..., N!

o Bit complexity:

size(n!) =1+ |loga(n!)| =nlogan+0O(n) (Stirling)



Direct computation of N!

@lgorithm. Repeat upn=n-un_iforn=1,2,... N.

o Arithmetic complexity: O(N) ops Optimal if computing 1!,..., N!

o Bit complexity:
size(n!) =1+ |loga(n!)] =nlogan+ O(n) (Stirling)
Step 1 is a multiplication of
nlogan+0O(Mm) by logan+O(1) bits

costing n Mz(logan) + O(n) bit operations if done by blocks.



Direct computation of N!

@lgorithm. Repeat upn=n-un_iforn=1,2,... N.

o Arithmetic complexity: O(N) ops Optimal if computing 1!,..., N!

o Bit complexity:
size(n!) =1+ |loga(n!)] =nlogan+ O(n) (Stirling)
Step 1 is a multiplication of
nlogan+0O(Mm) by logan+O(1) bits
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Total cost: Z (nMgz(logan) +O(n))

n=1



Direct computation of N!

@lgorithm. Repeat upn=n-un_iforn=1,2,... N.

o Arithmetic complexity: O(N) ops Optimal if computing 1!,..., N!

o Bit complexity:
size(n!) =1+ |loga(n!)] =nlogan+ O(n) (Stirling)
Step 1 is a multiplication of
nlogan+0O(Mm) by logan+O(1) bits

costing n Mz(logan) + O(n) bit operations if done by blocks.

N 2
Total cost: Z (nMg(logan) +0(n)) = NT Mz(loga N) 4+ O(N?) bit ops
n=1

Quasi-optimal for N terms, unsatisfactory for a single term



Nonsingular recurrences

Definition. We will say that the recurrence relation
bs(n) Unts+ - +b1(n> un+1+b0(n) Un=0 (Rec)
is nonsingular if bg(n) #0 for all n € N.
Proposition. If (Rec) is nonsingular, then
e its solution space has dimension s,
e any solution (un)nen is determined by (ug, ..., us—1).
In other words: there is a basis of solutions of the form  u(® = (1,0,0,...,0,%, %, *,... )
u® = (0,1,0,...,0,%,%,%,...)
u<5—1>; (0,0,0,...,1,% %, %,...)

(We will study singular recurrences in the next lecture.)




10

First N terms, Nth term

bs(n) Unts+ -+ +b1(n) U1+ bo(n) un=0

G’roblems. Given a nonsingular recurrence as above, initial values ug.s, and N € N: )
a) Compute (ug, ..., un-1)
b) Compute un

Complexity models: operations in K (“ops”)
\ binary operations for K =7 y
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b) Compute un

Complexity models: operations in K (“ops”)
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Bit sizes: for a single un, for ug.n  (reached)
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bs(n) Unts+ -+ +b1(n) U1+ bo(n) un=0

G’roblems. Given a nonsingular recurrence as above, initial values ug.s, and N € N: )
a) Compute (ug, ..., un-1)
b) Compute un

Complexity models: operations in K (“ops”)
\ binary operations for K =7 y

Bit sizes: O(nlogn) for a single uy, for ug.n  (reached)




10

First N terms, Nth term

bs(n) Unts+ -+ +b1(n) U1+ bo(n) un=0

G’roblems. Given a nonsingular recurrence as above, initial values ug.s, and N € N: )
a) Compute (ug, ..., un-1)
b) Compute un

Complexity models: operations in K (“ops”)
\ binary operations for K =7 y

Bit sizes: O(nlogn) for a single u,, O(NZlogN) forug.n (reached)
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First N terms, Nth term

bs(n) Unts+ -+ +b1(n) U1+ bo(n) un=0

G’roblems. Given a nonsingular recurrence as above, initial values ug.s, and N € N: )
a) Compute (ug, ..., un-1)
b) Compute un

Complexity models: operations in K (“ops”)

binary operations for K =7
. yop Y,
Bit sizes: O(nlogn) for a single u,, O(NZlogN) forug.n (reached)
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(m—

Arithmetic cost:
Over Z with bg=1:
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First N terms, Nth term

bs(n) Unts+ -+ +b1(n) U1+ bo(n) un=0

G’roblems. Given a nonsingular recurrence as above, initial values ug.s, and N € N: )
a) Compute (ug, ..., un-1)
b) Compute un

Complexity models: operations in K (“ops”)
binary operations for K =7

\_ J

Bit sizes: O(nlogn) for a single u,, O(NZlogN) forug.n (reached)

Direct algorithm: repeat u, = —ﬁ (bs—1(n —s)up_1+ - +bo(n—s)un_g)
(m—

Arithmetic cost: O(N) ops
Over Z with bs=1: O(N?Mz(log N)) binops

Quasi-optimal (for a fixed rec.) for problem a) — Focus on problem b)



2 Baby steps, giant steps
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A baby steps-giant steps algorithm for N!

[Strassen 1976]

NI=1-2.--0-(L4+1)(L+2)--- (20 - (Z=0+1)(2—0+2)--- 2 (=N/2
N ~~

N/2 blocks of size N!/2




A baby steps-giant steps algorithm for N!

12

[Strassen 1976]

NI=1-2.--0-(L4+1)(L+2)--- (20 - (Z=0+1)(2—0+2)--- 2 (=N/2
—_—— ~
N'/2 blocks of size N'/2
(Algorithm. Input: N Output: N! )
1. Let {=[N'/2
2. Baby steps:
a.Compute F=(x+1) (x+2)--- (x+¢)
3. Giant steps:
a. Compute Po=F(0), Py =F(l),P2=F(2(),...,Pe_1=F(({—1)¢)
by multipoint evaluation
\ b. Return PPy -+ Po_q- (2 +1)--- (N=1)N )
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A baby steps-giant steps algorithm for N!

[Strassen 1976]

NI=1-2.--0-(L4+1)(L+2)--- (20 - (Z=0+1)(2—0+2)--- 2 (=N/2
N ~~

N/2 blocks of size N!/2

(Algorithm. Input: N Output: N! )
1. Let {=[N'/2
2. Baby steps:

a.Compute F=(x+1) (x+2)--- (x+¢) O(M(¢)log?)
3. Giant steps:

a. Compute Po=F(0), Py =F(l),P2=F(2(),...,Pe_1=F(({—1)¢)
by multipoint evaluation O(M({)log?t)

\ b. Return Py Py ---Pp_1- (2 +1)--- (N—-1)N O((%)j

Total O(M(N'/2)log N) ops




Deterministic integer factoring 2

[Strassen 1976]

Idea: if N is composite, [v/N ]! AN is a nontrivial factor



Deterministic integer factoring 2

[Strassen 1976]

Idea: if N is composite, [v/N ]! AN is a nontrivial factor

(Algorithm. Input: N Output: a nontrivial factor of N, or 1 if N is prime
1. Let=[N!/4]
2. Baby steps:
a. Compute F=(x+1) (x+2) --- (x+{) € (Z/NZ)[x]
3. Giant steps:
a. Compute Py =F(0),...,Pi_1=F(({ — 1) £) by mulpt ev.

b. Compute P AN, ..., Pi_1 AN
\_ 1% 0 -1 )




Deterministic integer factoring 2

[Strassen 1976]

Idea: if N is composite, [v/N ]! AN is a nontrivial factor

(Algorithm. Input: N Output: a nontrivial factor of N, or 1 if N is prime
1. Let=[N!/4]
2. Baby steps:
a. Compute F=(x+1) (x+2) --- (x+{) € (Z/NZ)[x] O(M(2) log(€) Mz(h))
3. Giant steps:
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.

h=1+ Llogg NJ
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[Strassen 1976]

Idea: if N is composite, [v/N ]! AN is a nontrivial factor

(Algorithm. Input: N Output: a nontrivial factor of N, or 1 if N is prime
1. Let=[N!/4]
2. Baby steps:
a. Compute F=(x+1) (x+2) --- (x+{) € (Z/NZ)[x] O(M(2) log(€) Mz(h))
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-
h=1+ [logaN] Total O(M(N'/4)log(N)2+e))
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A TIME-SPACE TRADEOFF FOR
LEHMAN’S DETERMINISTIC INTEGER FACTORIZATION METHOD

MARKUS HITTMEIR

ABSTRACT. Fermat’s well-known factorization algorithm is based on finding a representation of natural
numbers N as the difference of squares. In 1895, Lawrence generalized this idea and applied it to multiples
kN of the original number. A systematic approach to choose suitable values for k has been introduced
by Lehman in 1974, which resulted in the first deterministic factorization algorithm considerably faster
than trial division. In this paper, we construct a time-space tradeoff for Lawrence’s generalization and
apply it together with Lehman’s result to obtain a deterministic integer factorization algorithm with
runtime complexity O(N2/9t°(1)), This is the first exponential improvement since the establishment of
the O(N1/4+°()) bound in 1977.

1. INTRODUCTION

We consider the problem of computing the prime factorization of natural numbers N. There is a large
variety of probabilistic and heuristic factorization methods achieving subexponential complexity. We refer
the reader to the survey [Len00] and to the monographs [Rie94] and [Wag13]. The focus of the present paper
is a more theoretical aspect of the integer factorization problem, which concerns deterministic algorithms
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AN EXPONENT ONE-FIFTH ALGORITHM FOR
DETERMINISTIC INTEGER FACTORISATION

DAVID HARVEY

ABSTRACT. Hittmeir recently presented a deterministic algorithm that prov-
ably computes the prime factorisation of a positive integer N in N2/9+o(1)
bit operations. Prior to this breakthrough, the best known complexity bound
for this problem was N1/4+0(1) 4 result going back to the 1970s. In this pa-
per we push Hittmeir’s techniques further, obtaining a rigorous, deterministic
factoring algorithm with complexity N1/5+0(1),

1. INTRODUCTION

Let F(N) denote the time required to compute the prime factorisation of an
integer N > 2. By “time” we mean “number of bit operations”, or more precisely,
the number of steps performed by a deterministic Turing machine with a fixed,
finite number of linear tapes [Pap94]. All integers are assumed to be encoded in
the usual binary representation.

In this paper we prove the following result:

Theorem 1.1. There is an integer factorisation algorithm achieving

F(N) = O(N'/?10g'%® N).



Generalization to P-recursive sequences 10

[Chudnovsky & Chudnovsky 1987]

Write the recurrence in matrix form, pull out the denominator:

Un+t1 bs(n) Un
: _ 1 KR :
Un4s—1 bs(n) bs(n) Unts—2
Un+s —bo(n) —bi(m) -+ —bs_1(n) Unts—1
B(TL) un
Then
Un= ! B(N—1)---B(1)B(0) Uy

By (N—1) - by(1) b5(0)

B(n) = matrix of polynomials of degree <d



Fast polynomial matrix “factorial”

17

\.

(Algorithm. Input: B e K[n]***of deg <d, Ne N Output: B(N —1) --- B(1) B(0)

1. Write N ={m with { = and m= (assumed exact for simplicity)
2. Baby steps:

a. Compute B(X+1),...,B(X+{—-1)

b. Compute F(X) =B(X+{£—1)--- B(X+1) B(X)
3. Giant steps:

a. Compute F(0), F({), ..., F((m — 1) {) simultaneously

b. Deduce and return the product F((m —1)¢) --- F(£) F(0)

N
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Fast polynomial matrix “factorial”

17

2. Baby steps:
a. Compute B(X+1),...,B(X+{—-1)

\.

(Algorithm. Input: B e K[n]***of deg <d, Ne N Output: B(N —1) --- B(1) B(0) )

1. Write N ={m with { = and m= (assumed exact for simplicity)

b. Compute F(X) =B(X+{£—1)--- B(X+1) B(X) O(M(td)log(t)s®)
3. Giant steps:

a. Compute F(0), F({), ..., F((m — 1) {) simultaneously

b. Deduce and return the product F((m —1)¢) --- F(£) F(0) )

deg F(X) < (d



Fast polynomial matrix “factorial” H
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Fast polynomial matrix “factorial” H

orithm. Input: B Kn of deg <d, N € utput: —1)---B(1 0
(Alg ithm. Input: B s*sof deg <d, Ne N Output: B(N B(1)B )
1. Write N ={m with = (N/d)"/?and m = (N d)"/? (assumed exact for simplicity)

2. Baby steps:
a. Compute B(X+1),...,B(X+{—-1)

b. Compute F(X) =B(X+{£—1)--- B(X+1) B(X) O(M(td)log(t)s®)
3. Giant steps:
a. Compute F(0), F({), ..., F((m — 1) {) simultaneously O(M(m) log(m) s°)
\ b. Deduce and return the product F((m —1)¢) --- F(£) F(0) O(m se))

degF(X) < td (d<m



Fast polynomial matrix “factorial” H

(Algorithm. Input: B e K[n]***of deg <d, Ne N Output: B(N —1) --- B(1) B(0) )
1. Write N ={m with {= (N /d)"/?and m = (N d)!/? (assumed exact for simplicity)

2. Baby steps:

a. Compute B(X+1),...,B(X+€—1) O(tM(d)log(d) s?)
b. Compute F(X) =B(X+{£—1)--- B(X+1) B(X) O(M(td)log(t)s®)
3. Giant steps:
a. Compute F(0), F({), ..., F((m — 1) {) simultaneously O(M(m) log(m) s°)
\ b. Deduce and return the product F((m —1)¢) --- F(£) F(0) O(m se))

degF(X) < td (d<m
naively step 2a takes O({ d*s?) ops
Exercise 7. Design an algorithm to compute B(x + a) from B(x) in O(M(d) log d) ops.



Fast polynomial matrix “factorial” H

(Algorithm. Input: B e K[n]***of deg <d, Ne N Output: B(N —1) --- B(1) B(0) )
1. Write N ={m with {= (N /d)"/?and m = (N d)!/? (assumed exact for simplicity)

2. Baby steps:

a. Compute B(X+1),...,B(X+€—1) O(tM(d)log(d) s?)
b. Compute F(X) =B(X+{£—1)--- B(X+1) B(X) O(M(td)log(t)s®)
3. Giant steps:
a. Compute F(0), F({), ..., F((m — 1) {) simultaneously O(M(m) log(m) s°)
\ b. Deduce and return the product F((m —1)¢) --- F(£) F(0) O(m se))
degF(X)<td (d<m Total O( m) log(m se>

naively step 2a takes O({ d*s?) ops
Exercise 8. Design an algorithm to compute B(x + a) from B(x) in O(M(d) log d) ops.



Nth term of a P-recursive sequence '

(Algorithm. Notation as before. )
1. Compute B(N —1) --- B(1) B(0) by the previous algorithm O(M(m) log(m) s°)
2. Compute bg(N —1) --- bg(1) bs(0) by the previous algorithm O(M(m)log(m))

\ 3. Divide, return 0 (52)/
Theorem. Let (u(®, ... u(s~V) be the basis of solutions s.t. u(ij) = 0y,; of a nonsingular
recurrence of order s and degree <d. One can compute the matrix (u](i) )i ;€K% in

O<M(\/N d)log(N d) 59> ops.
\- y
N

(Corollary. One can compute the Nth term of a P-recursive sequence
\given by a nonsingular recurrence in O(M(y/N) log N) ops.
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Algorithm. Use a product tree. That is, split the product as

Nl=12---m-(m+1)---N, m=|N/2|,

———
P(0,m) P(m,N)
and recurse.
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Algorithm. Use a product tree. That is, split the product as

Nl=12---m-(m+1)---N, m=|N/2|,

———
P(0,m) P(m,N)
and recurse.

Using size(P({,h)) <14 (h—{)loga N, the cost C({, h) of computing P({, h) satisfies
C(¢,h) < C(¢, m)+ C(m,h) +Mz(1+[(h—1€)/2]logaN) m=|({+h)/2].
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Algorithm. Use a product tree. That is, split the product as

Nl=12---m-(m+1)---N, m=|N/2|,

———
P(0,m) P(m,N)
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C(¢,h) < C(¢, m)+ C(m,h) +Mz(1+[(h—1€)/2]logaN) m=|({+h)/2].
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Computing N! in quasi-linear time 2

Algorithm. Use a product tree. That is, split the product as

Nl=12---m-(m+1)---N, m=|N/2|,

———
P(0,m) P(m,N)
and recurse.

Using size(P({,h)) <14 (h—{)loga N, the cost C({, h) of computing P({, h) satisfies
C(¢,h) < C(¢, m)+ C(m,h) +Mz(1+[(h—1€)/2]logaN) m=|({+h)/2].
The total cost of the multiplications at any given recursion depth is

<> My(1+[Hi/2]logaN)  where > Hi<N
- _
<MZ<%log2N+O(N)).

Total O(Mz(NlogN)logN).



Nth term of a P-recursive sequence -

[Chudnovsky & Chudnovsky 1987]
bs(M) Unys+ -+ +bi(n) Ungp1+bo(n) un=0, bicZ[n]

Same idea as before: .

bs(N —1) - bs(1) bs(0) B(N—1)---B(1)B(0) Ug

write Un= (Un,...,Unts—1) and Un=

(Algorithm. )
1. Compute B(N —1) --- B(1) B(0) by binary splitting
2. Compute bg(N —1) --- bs(1) bs(0) by binary splitting
3. Divide

(

n

heorem. One can compute the Nth term of a sequence (un) € QN given by a
onsingular recurrence with coefficients in Z[n] in bit operations.

(5




Nth term of a P-recursive sequence -

[Chudnovsky & Chudnovsky 1987]
bs(M) Unys+ -+ +bi(n) Ungp1+bo(n) un=0, bicZ[n]

Same idea as before:

. 1
write Un= (Un,...,Unts—1) and Un= b (N=1) - bo(1)5:(0) B(N—1)---B(1)B(0) Ug
(Algorithm. (costs for fixed recurrence, hides dependency on s and d)\
1. Compute B(N —1) --- B(1) B(0) by binary splitting O(M(nlogn)log(n))
2. Compute bg(N —1) --- bs(1) bs(0) by binary splitting O(M(nlogn)log(n))
\ 3. Divide )
ﬂl"heorem. One can compute the Nth term of a sequence (i) € QN given by a )
nonsingular recurrence with coefficients in Z[n| in bit operations.
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Nth term of a P-recursive sequence -

[Chudnovsky & Chudnovsky 1987]
bs(M) Unys+ -+ +bi(n) Ungp1+bo(n) un=0, bicZ[n]

Same idea as before:

. 1
write Un= (Un,...,Unts—1) and Un= b (N=1) - bo(1)5:(0) B(N—1)---B(1)B(0) Ug
(Algorithm. (costs for fixed recurrence, hides dependency on s and d)\
1. Compute B(N —1) --- B(1) B(0) by binary splitting O(M(nlogn)log(n))
2. Compute bg(N —1) --- bs(1) bs(0) by binary splitting O(M(nlogn)log(n))
\3. Divide (gcd!) O(M(nlogn) log(n))j
ﬂl"heorem. One can compute the Nth term of a sequence (i) € QN given by a )
\nonsingular recurrence with coefficients in Z[n] in O(M(nlog?n)) bit operations. )
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An application

[Flajolet & Salvy 1997]

Problem. Compute the coefficient of x2™ in

(14%)2N (1 4+x+xH)N.




An application

22

[Flajolet & Salvy 1997]

Problem. Compute the coefficient of x2™ in

(14%)2N (1 4+x+xH)N.

Let f(x) = (1 +x)?N (1 +x+ x?)™. One has

f’(x)_2N 1 2x+1

f(x) 7 1+x 1I+x+4x2

Convert ODE to recurrence, use binary splitting.



The case of hypergeometric sums 23

N-1
Goal. Compute In= Z Un where upq1= p(n) Uy, Ug=1
— q(n)

Last week’s version.

h—1 h—1
Wite 37 un =3 D =gyt where QLR =ath— 1)+ q()
= G (L) =p(h—1) -+ p()
T ,h) _ T(e,m) T(m,h) P({,m
ThenZun—Zun—i-Zun gives Q(,h) Q(E,m)uz—’_Q(m,h) Q(E,m)uz
T({,h) =Q(m,h) T({, m) + P({, m) T(m, h).
Matrix version.
Unyr ) 1 p(n) 0 Un L [ P({,h) 0
< Inil >_ q(n) < q(n) a(n) >< In ) B(h—1) B<€)_< T((,h) Q(L,h) )



An exercise for next time

Exercise. Give an algorithm to convert an n-bit number from base 2 to base 10 in
O(Mz(n) logn) bit operations, where Mz(n) is a bound on the cost of n-bit integer
multiplication.

24



4 Partial sums of D-finite series



Application to sums of D-finite series

n—1
LetX, = Z Uy £X for some fixed & € R.
k=0

If (un)nen satisfies a rec. with poly. coeffs, then (X,,) too.

26

(why?)



Application to sums of D-finite series 2

n—1
LetX, = Z Uy £X for some fixed & € R.
k=0
If (un)nen satisfies a rec. with poly. coeffs, then (X,,) too. (why?)

Better formulation:

Un+1 £n+1 0 up &
: 1 ( B(n) & ) : :
Unys EMTH bs(n) 0 Unts—1&™
Tyt bs(n) 0 -+ 0 bs(n) In



BSGS evaluation of D-finite series (sketch)

Unyq EMF1 0
: 1 B(n)¢ :
Un+s £n+1 B bs(n) 0

Tt bg(n) 0 -+ 0 by(n)

un &M

Un4s—1 &n
In

27



BSGS evaluation of D-finite series (sketch)

Unyq EMF1 0
: 1 B(n)¢ :
Un+s £n+1 B bs(n) 0

Tt bg(n) 0 -+ 0 by(n)

un &M

Un4s—1 &n
In

27



BSGS evaluation of D-finite series (sketch) o

Un+1 gntl 0 un &M
: 1 ( B(n)& ) : :
Un+s £n+1 a bS(n) 0 Un+s—1 E,n
Tntt bs(n) 0 -+ 0 bg(n) In

Working with p-bit approximations and ignoring rounding errors:

TN to p-bit precision in  O(M(v/N)log(N) Mz(p)) ops



BSGS evaluation of D-finite series (sketch) o

Un+1 gntl 0 un &M
: 1 ( B(n)& ) : :
Un+s £n+1 a bS(n) 0 Un+s—1 E,n
Tntt bs(n) 0 -+ 0 bg(n) In

Working with p-bit approximations and ignoring rounding errors:

TN to p-bit precision in  O(M(v/N)log(N) Mz(p)) ops

Target accuracy 2~ ' typically requires N = O(t) (geometric convergence)

If rounding errors negligible, working precision p =t + O(1)

~ evaluation of D-finite series to precision t in O(t*/2) ops



28

Binary splitting for D-finite series

n—1

Again: L= Z uy &K satisfies a recurrence
k=0

(Note that & enters into the recurrence!)

The previous result on binary splitting yields:

Corollary. One can evaluate the Nth partial sum of a fixed D-finite series at a fixed
point & € Q in O(M(N log? N)) bit operations.

Typical case: N = O(t)

t = target bit accuracy



Application: High-precision evaluation of classical constants *

e e=exp(1) with error <27 *in O(M(tlogt)) bit operations
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<e/n!




Application: High-precision evaluation of classical constants *

e e=exp(1) with error <27 *in O(M(tlogt)) bit operations

—_

— 1 & 1 e . t+o(t)
= —_ —_ —<2 t =
€ Z !+n!]§(n+1)~-~(n+k)’ n! forn logat

<e/n!

Cost of the binary splitting method: O ( M( t log ( t )2)) =0(M(tlogt)).
logat

logat



Application: High-precision evaluation of classical constants *

e e=exp(1) with error <27 *in O(M(tlogt)) bit operations

—_

— 1 & 1 e . t+o(t)
= —_ —_ —<2 t =
€ Z !+n!]§(n+1)~-~(n+k)’ n! forn logat

<e/n!

. o t ot \2)) _
Cost of the binary splitting method: O ( M( T log (10g2 n ) )) =0(M(tlogt)).

e In(2) in O(M(tlog(t)?)) bit operations:



Application: High-precision evaluation of classical constants

e e=exp(1) with error <27 *in O(M(tlogt)) bit operations

—_

— 1 & 1 e . t+o(t)
= —_ —_ —<2 t =
€ Z !+n!]§(n+1)~-~(n+k)’ n! forn logat

<e/n!

. o t ot \2)) _
Cost of the binary splitting method: O ( M( T log (10g2 n ) )) =0(M(tlogt)).

e In(2) in O(M(tlog(t)?)) bit operations: In(2) = —In(1+ &) with & = —%



Application: High-precision evaluation of classical constants

e e=exp(1) with error <27 *in O(M(tlogt)) bit operations

—_

— 1 & 1 e . t+o(t)
= —_ —_ —<2 t =
€ Z !+n!]§(n+1)~-~(n+k)’ n! forn logat

<e/n!

. o t ot \2)) _
Cost of the binary splitting method: O ( M( T log (10g2 n ) )) =0(M(tlogt)).

e In(2) in O(M(tlog(t)?)) bit operations: In(2) = —In(1+ &) with & = —%

Radius of convergence=1 = generalterm=0(2"%) = need O(t) terms.
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Application: High-precision evaluation of classical constants *

e e=exp(1) with error <27 *in O(M(tlogt)) bit operations

1

1 & t-+o(t)
!+H§ m+1) - (n+k)’

logat

i
M7
| —

e
— <2 forn=
n!

<e/n!

. o t ot \2)) _
Cost of the binary splitting method: O ( M( T log (10g2 n ) )) =0(M(tlogt)).

e In(2) in O(M(tlog(t)?)) bit operations: In(2) = —In(1+ &) with & = —%
Radius of convergence=1 = generalterm=0(2"%) = need O(t) terms.
> ! a=545140134
° 1 = 12 (=™ (6n)! (an+b) , b =13591409 [Chudnovsky? 1987]
T o3/ (Bn)Inld cin ¢ = 640320

1 hypergeometric series, 1 square root, 1 division

Used in record computations — although another algo. yields t digits of 7t in only O(M(t) log t) bit ops
[Salamin 1976, Brent 1978]



Dependency on the evaluation point %

Un+1 E,n+1 0 unan
: 1 ( B(n) & ) : :
Un+s gntl bs(n) 0 Untg—1 &
it bs(n) 0 --- 0 bg(n) In

If & is of bit size h, then (for a fixed differential equation):
e the matrices, taken at n <N, have bit size O(h + log N),
e the cost of computing the product tree for N terms becomes

size of each row
O(M(N (n+logN))logN).

—_——
size of each leaf depth

If N and h are both ©(t), the cost becomes quadratic in t!



5 The “bit-burst’ method



Fast high-precision evaluation of the exponential function *

[Brent 1976]
Goal: for a real number % < &< 1, compute exp(&) with error <2~ tin O(t) bit ops.

We assume that a sufficiently accurate approximation of & is given (t + O(1) bits suffice)

Remark: can reduce to & € [1/2,1) using exp(2x) = exp(x)*



Fast high-precision evaluation of the exponential function *

[Brent 1976]

Goal: for a real number % < &< 1, compute exp(&) with error <2~ tin O(t) bit ops.

We assume that a sufficiently accurate approximation of & is given (t + O(1) bits suffice)

Write & = 0.6186283848586E788898 108118128138 14815816817 - .
_— ~— v
B my < 272‘<+1
= Mo+ Myt Myt oo+ MKt where {mk fits on 2% bits
Then exp(§) = exp(mg)exp(my) ---exp(mk—1) and K= 0O(logt)

Remark: can reduce to & € [1/2,1) using exp(2x) = exp(x)*



Fast high-precision evaluation of the exponential function *

[Brent 1976]

Goal: for a real number % < &< 1, compute exp(&) with error <2~ tin O(t) bit ops.

We assume that a sufficiently accurate approximation of & is given (t + O(1) bits suffice)

Write & = 0.6186283848586E788898 108118128138 14815816817 - .
_— ~— v
B my < 272‘<+1
= Mo+ Myt Myt oo+ MKt where {mk fits on 2% bits
Then exp(§) = exp(mg)exp(my) ---exp(mk—1) and K= 0O(logt)

Algorithm. Evaluate each my by binary splitting, then multiply.

The final multiplications cost O(M(t) log t) in total.

Remark: can reduce to & € [1/2,1) using exp(2x) = exp(x)*
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& = motmyfmyt ey where {mk fits on 2* bits

Computation of a single exp(my):
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3
my < 272 +1

& = motmyfmyt ey where {mk fits on 2* bits

Computation of a single exp(my):
e Because m; <2211, only N = O(27¥t) terms of the series are needed
e Cost of binary splitting:
size of each row size of each row
0 (M(m) logN) = O(M(27*t (2+logt) ) logt)

—— ————
size of each leaf depth size of each leaf depth
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3
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e Because m; <2211, only N = O(27¥t) terms of the series are needed

e Cost of binary splitting:
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3
my < 272 +1

& = motmyfmyt ey where {mk fits on 2* bits

Computation of a single exp(my):

e Because m; <2211, only N = O(27¥t) terms of the series are needed

e Cost of binary splitting:

size of each row size of each row
—N—
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Fast high-precision exponential: analysis >

3
my < 272 +1

& = motmyfmyt ey where {mk fits on 2* bits

Computation of a single exp(my):

e Because m; <2211, only N = O(27¥t) terms of the series are needed

e Cost of binary splitting:

size of each row size of each row
—N—
O(M(N (n+10gN))logN) = O(M(2¥t (2“+logt) ) logt)
— N —— T N
size of each leaf depth size of each leaf depth

= O(M(tlogt+2 ¥ tlog?t))

K—-1 K—1
Total: » CM(tlogt+2—ktlog2t)gcm(Z (tlogt+2—ktlog2t)>
k=0 k=0



Fast high-precision exponential: analysis >

3
my < 272 +1

& = motmyfmyt ey where {mk fits on 2* bits

Computation of a single exp(my):

e Because m; <2211, only N = O(27¥t) terms of the series are needed

e Cost of binary splitting:

size of each row size of each row
—N—
O(M(N (n+10gN))logN) = O(M(2¥t (2“+logt) ) logt)
— N —— T N
size of each leaf depth size of each leaf depth

= O(M(tlogt+2 ¥ tlog?t))

K—-1 K-1
Total:  ~ CM(tlogt+2 ¥ tlog?t) < C- M(Z (tlogt+ 2—ktlog2t)> = O(M(tlog(t)?))
k=0 k=0
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[Chudnovsky & Chudnovsky 1987]
Fix a differential operator L; assume that 0 is an ordinary point.

Consider a basis y1, . .., yr of analytic solutions.
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The bit-burst method for D-finite series

[Chudnovsky & Chudnovsky 1987]
Fix a differential operator L; assume that 0 is an ordinary point.
Consider a basis y1, . .., yr of analytic solutions.
e Suppose that the series expansion of yyx converges on {|&| < p}.
Binary splitting ~~ y(§&) for |§| < % p of bit size O(1) in O(t) bit ops.
e Derivatives have the same radius of convergence, are still D-finite.

~ (Y(£),¥'(€),...,y" (&) in O(t) ops
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The bit-burst method for D-finite series

[Chudnovsky & Chudnovsky 1987]
Fix a differential operator L; assume that 0 is an ordinary point.
Consider a basis y1, . .., yr of analytic solutions.
e Suppose that the series expansion of yyx converges on {|&| < p}.
Binary splitting ~~ y(§&) for |§| < % p of bit size O(1) in O(t) bit ops.
e Derivatives have the same radius of convergence, are still D-finite.
~ (Y(&),y'(€),...,y""V(€)) in O(t) ops

@ - u®) i
e We can do that for yi,...,yy ~ : : in O(t) ops

) -y



The bit-burst method for D-finite series

34

[Chudnovsky & Chudnovsky 1987]

Fix a differential operator L; assume that 0 is an ordinary point.

Consider a basis y1, . .., yr of analytic solutions.

Suppose that the series expansion of yi converges on {|&| < p}.
Binary splitting ~~ y(§&) for |§| < % p of bit size O(1) in O(t) bit ops.
Derivatives have the same radius of convergence, are still D-finite.
~ (Y(&),y'(€),...,y""V(€)) in O(t) ops

vi(§) - we(§)

Wecandothatforyl,...,yrw( )in O(t) ops

) -y

By multiplying these matrices for steps corresponding to a decomposition

&= O.Q@E4€5ﬁ6ﬁ7¢w&6517- .

we can evaluate the solutions at complex points of bit size t in O(t) ops.



Fast high-precision evaluation of D-finite functions (sketch) — *°

[Chudnovsky & Chudnovsky 1987, van der Hoeven 1999, ...]

(&) - un(§) L=

e By multiplying matrices : : , ;a +i)

uVE) ey S N

we can also evaluate the (analytic continuation of) D et B
the solutions outside the disk |&| < p. - N e

. .
.

\ZZ )
!

|




Fast high-precision evaluation of D-finite functions (sketch)

35

[Chudnovsky & Chudnovsky 1987, van der Hoeven 1999, ...]

e By multiplying matrices :
Wl T
we can also evaluate the (analytic continuation of)

N0
i

vi(&) o un(§) ) ST
) AT

(1+1)

1
i

the solutions outside the disk |&| < p.

—i

e For fixed &, computing y(&) with an error <2~ requires O(t) digits of &.




Fast high-precision evaluation of D-finite functions (sketch) — *°

[Chudnovsky & Chudnovsky 1987, van der Hoeven 1999, ...]

(&) - un(§) L=
¢ By multiplying matrices : : , U S
ulE) - u ) T A
we can also evaluate the (analytic continuation of) by
the solutions outside the disk |&| < p. - N e

e For fixed &, computing y(&) with an error <2~ requires O(t) digits of &.

o All necessary error bounds can be computed automatically.



Fast high-precision evaluation of D-finite functions (sketch) — *°

[Chudnovsky & Chudnovsky 1987, van der Hoeven 1999, ...]

yi(&) - ue(§) /‘ .
o . . . . . e 5 i
¢ By multiplying matrices : , iyl )
W) ey AN
we can also evaluate the (analytic continuation of) by
the solutions outside the disk |&| < p. - N e

e For fixed &, computing y(&) with an error <2~ requires O(t) digits of &.

o All necessary error bounds can be computed automatically.

Pseudo-theorem: “one can evaluate a fixed D-finite function at a fixed point € C
with an error < 2~ tin O(t) bit operations”.

(Can be stated rigorously with more care.)



6 Rectangular splitting



Rectangular splitting for polynomials >

[Paterson & Stockmeyer 1973]

Goal: evaluate p(£) =agq_1 £97 1 + - -+ + ag with “small” a; ata “large” (p-bit) £ € R

p(x) = ( ap + arx + -+ + ae_le‘*l) x? (d=mY)
+ ap + agr1x + o0+ age_1xt1 ) !
+ ( A(m—1)¢ + A(m—1)e+1X% + -+ ame_le—l ) x(m—l)e

Same idea for evaluating p € IK[x] on a polynomial / matrix / ...



Rectangular splitting for polynomials >

[Paterson & Stockmeyer 1973]

Goal: evaluate p(£) =agq_1 £97 1 + - -+ + ag with “small” a; ata “large” (p-bit) £ € R

p(x) = ( ap + arx + - 4+ aexth) x? (d=mo)
+ ( ag + agp1x + o0+ agexth) xt
+ ( Am-1)¢ T Am-1)e41X + -+ ame—1Xe_1 ) x(m=Dt
(Algorithm. )
1. (Baby steps) Compute &2,...,&" O(() costly ops
2. Evalute the inner polynomials O(fm) cheap ops
3. (Giant steps) Compute £2¢,. .., g(m=1¢ O(m) costly ops
\4. Evaluate the outer polynomial O(m) costly ops )

Same idea for evaluating p € IK[x] on a polynomial / matrix / ...



Rectangular splitting for hypergeometric series

f(x)=ap+apaix+apa;agx?+ - - an=p(n)/q(n)

ap(l+a; (x+ay (C+---+a1xt71))) x°
Qg+ ag_q ( ag(14+ apr (x+agro (X2 + - +age-1x71)) x*

ag---a20—1 (

+ Qam-1)¢ " Ame—1

( Ametye (L4 (o oo + ame_1xE 1) X(m_m)_“
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