MPRI C-2-22 — Lecture 14

Computing terms of P-finite sequences

Marc Mezzarobba

January 27, 2025

Doctoral funding available

```
Group MAX team, École polytechnique
```

Starting date Fall 2025 (negotiable)

Topic Differential equations

From computational complexity and differential Galois theory to low-level implementation details depening on student interests

Advisors J. van der Hoeven + one of { G. Lecerf, M. Mezzarobba, F. Ollivier, G. Pogudin

Talk to us ASAP if interested — Tell your friends

1 Introduction

Reminders: D-finite series, P-finite sequences

Theorem. Let
$$f = \sum_{n \geqslant 0} f_n x^n \in \mathbb{K}[[x]]$$
.

f is D-finite \Leftrightarrow $(f_n)_{n \in \mathbb{N}}$ is P-finite / P-recursive \Leftrightarrow f satisfies a linear ODE \Leftrightarrow in $\mathbb{K}[x]$ \Leftrightarrow dim $\operatorname{span}_{\mathbb{K}(x)}(f, f', f'', \ldots) < \infty$

Corollary. One can compute the first N terms of a D-finite series in O(N) ops.

"ops" = operations in the base field \mathbb{K}

Reminders: C-finite sequences

Definition. A sequence $(u_n) \in \mathbb{K}^{\mathbb{N}}$ is called **C-finite** when it satisfies a linear recurrence

$$\forall n \in \mathbb{N}$$
, $\mathbf{1} u_{n+s} + c_{s-1} u_{n+s-1} + \dots + c_0 u_n = 0$ with $c_i \in \mathbb{K}$.

Theorem. One can compute the Nth term of a C-finite sequence

- in $O(s^{\theta} \log(N))$ ops by binary powering on the companion matrix,
- \bullet in $O\big(M(s)\log(N)\big)$ ops by binary powering modulo charpoly

or by repeated Gräffe transforms.

Remarks.

- Over \mathbb{Z} , all three methods take $O(M_{\mathbb{Z}}(N))$ bit operations.
- They do not work in the P-finite case.

Reminders: Binary splitting for hypergeometric sums

Definition. A **(generalized) hypergeometric series** is a power series whose coefficient sequence satisfies a first-order recurrence relation with polynomial coefficients:

$$f(x) = \sum_{n=0}^{\infty} u_n x^n$$
 where $u_{n+1} = \frac{p(n)}{q(n)} u_n$, $u_0 = 1$.

For $p, q \in \mathbb{Z}[n]$ and $x \in \mathbb{Q}$, one can compute $\sum_{n=0}^{N-1} u_n x^n$ in $O(M_{\mathbb{Z}}(N \log(N)^2))$ bit operations

by splitting \sum_{0}^{N-1} as $\sum_{0}^{m-1} + \sum_{m}^{N-1} = \frac{I(0,m)}{Q(0,m)} + \frac{T(m,N)}{Q(m,N)} u_m$ and computing the numerators & denominators recursively

$$\begin{split} u_{n+s} + c_{s-1} u_{n+s-1} + \cdots + c_0 u_n &= 0 \\ u_n &= \alpha_1^n \, p_1(n) + \cdots + \alpha_k^n \, p_k(n) \\ \text{Direct algorithm:} \quad \left\{ \begin{array}{l} u_s &:= \, -(c_{s-1} u_{s-1} + \cdots + c_0 u_0) \\ u_{s+1} &:= \, -(c_{s-1} u_s \ + \cdots + c_0 u_1) \\ \vdots \end{array} \right. & |u_n| \leqslant 2^{Kn} \end{split}$$

$$\begin{array}{c} u_{n+s} + c_{s-1} \, u_{n+s-1} + \cdots + c_0 \, u_n = 0 \\ u_n = \alpha_1^n \, p_1(n) + \cdots + \alpha_k^n \, p_k(n) \\ \\ \text{Direct algorithm:} \quad \left\{ \begin{array}{ll} u_s & := & -(c_{s-1} \, u_{s-1} + \cdots + c_0 \, u_0) \\ u_{s+1} & := & -(c_{s-1} \, u_s & + \cdots + c_0 \, u_1) \\ \vdots & \vdots \end{array} \right. \\ \end{array} \quad \left. \begin{array}{ll} |u_n| \leqslant 2^{Kn} \\ |u_n| \leqslant 2^{Kn$$

Bit operations:
$$\sum_{}^{N-1} C M_{\mathbb{Z}}(h, K n)$$

for a fixed rec.

$$u_{n+s} + c_{s-1}u_{n+s-1} + \dots + c_0u_n = 0$$

 $u_n = \alpha_1^n p_1(n) + \dots + \alpha_k^n p_k(n)$

$$\begin{array}{ll} \text{Direct algorithm:} & \left\{ \begin{array}{ll} u_s & := & -(c_{s-1}u_{s-1}+\dots+c_0u_0) \\ u_{s+1} & := & -(c_{s-1}u_s & +\dots+c_0u_1) \\ \vdots \end{array} \right. \\ & \left. \begin{array}{ll} |u_n| \leqslant 2^{Kn} \\ \end{array} \right. \\ \end{array}$$

Bit operations:
$$\sum_{n=s}^{N-1} C M_{\mathbb{Z}}(h, K n) \leqslant C' \frac{N(N-1)}{2}$$

for a fixed rec.

$$u_{n+s} + c_{s-1} u_{n+s-1} + \dots + c_0 u_n = 0$$

$$u_n = \alpha_1^n p_1(n) + \dots + \alpha_k^n p_k(n)$$

Bit operations:
$$\sum_{n=s}^{N-1} C\,M_{\mathbb{Z}}(h,K\,n) \;\leqslant\; C'\frac{N\,(N-1)}{2} \qquad \qquad \text{for a fixed rec.}$$

$$=\; O(N^2)$$

$$u_{n+s} + c_{s-1} u_{n+s-1} + \dots + c_0 u_n = 0$$

$$u_n = \alpha_1^n p_1(n) + \dots + \alpha_k^n p_k(n)$$

Bit operations:
$$\sum_{n=s}^{N-1} C\,M_{\mathbb{Z}}(h,K\,n) \;\leqslant\; C'\frac{N\,(N-1)}{2} \qquad \qquad \text{for a fixed rec.}$$

$$=\; O(N^2)$$

C-finite sequences: Binary powering over $\mathbb Z$

Proposition. Let $(u_n)_{n\in\mathbb{N}}$ satisfy a linear recurrence with constant coefficients and unit leading term. Assume $u_0 = 1$.

Given $N\in\mathbb{N},$ one can compute \mathfrak{u}_N in $O(M_\mathbb{Z}(N))$ bit operations.

Proof. Write

$$\begin{pmatrix}
u_{n+1} \\ u_{n+2} \\ \vdots \\ u_{n+s}
\end{pmatrix} =
\begin{pmatrix}
1 \\ \vdots \\ -c_0 - c_1 \cdots - c_{s-1}
\end{pmatrix}
\begin{pmatrix}
u_n \\ u_{n+1} \\ \vdots \\ u_{n+s-1}
\end{pmatrix}.$$

$$A \in \mathbb{Z}^{s \times s}$$

- $||A^n|| \le ||A||^n \le 2^{Kn}$ for some K > 0.
- Cost of binary powering:

$$C \cdot M_{\mathbb{Z}}(K) + \dots + C \cdot M_{\mathbb{Z}}(\frac{N}{4}K) + C \cdot M_{\mathbb{Z}}(\frac{N}{2}K) = O(M_{\mathbb{Z}}(N)).$$

C-finite sequences: Binary powering over $\ensuremath{\mathbb{Z}}$

Proposition. Let $(u_n)_{n\in\mathbb{N}}$ satisfy a linear recurrence with constant coefficients and unit leading term. Assume $u_0 = 1$.

Given $N \in \mathbb{N}$, one can compute \mathfrak{u}_N in $O(M_\mathbb{Z}(N))$ bit operations.

Proof. Write

$$\begin{pmatrix} u_{n+1} \\ u_{n+2} \\ \vdots \\ u_{n+s} \end{pmatrix} = \begin{pmatrix} 1 \\ & \ddots \\ & & 1 \\ -c_0 & -c_1 & \cdots & -c_{s-1} \end{pmatrix} \begin{pmatrix} u_n \\ u_{n+1} \\ \vdots \\ u_{n+s-1} \end{pmatrix}.$$

$$A \in \mathbb{Z}^{s \times s}$$

- $||A^n|| \le ||A||^n \le 2^{Kn}$ for some K > 0.
- Cost of binary powering:

$$C \cdot M_{\mathbb{Z}}(K) + \cdots + C \cdot M_{\mathbb{Z}}(\frac{N}{4}K) + C \cdot M_{\mathbb{Z}}(\frac{N}{2}K) = O(M_{\mathbb{Z}}(N)).$$

Exercise. What is the complexity over \mathbb{Q} (i.e. for a non-unit leading term)?

Algorithm. Repeat $u_n = n \cdot u_{n-1}$ for n = 1, 2, ..., N.

Algorithm. Repeat $u_n = n \cdot u_{n-1}$ for n = 1, 2, ..., N.

• Arithmetic complexity: O(N) ops

Optimal if computing $1!, \dots, N!$

Algorithm. Repeat $u_n = n \cdot u_{n-1}$ for n = 1, 2, ..., N.

• Arithmetic complexity: O(N) ops

Optimal if computing $1!, \dots, N!$

• Bit complexity:

$$\operatorname{size}(n!) = 1 + \lfloor \log_2(n!) \rfloor = n \log_2 n + O(n)$$
 (Stirling)

Algorithm. Repeat $u_n = n \cdot u_{n-1}$ for n = 1, 2, ..., N.

• Arithmetic complexity: O(N) ops

Optimal if computing $1!, \dots, N!$

• Bit complexity:

$$\operatorname{size}(\mathfrak{n}!) = 1 + \lfloor \log_2(\mathfrak{n}!) \rfloor = \mathfrak{n} \log_2 \mathfrak{n} + O(\mathfrak{n})$$
 (Stirling)

Step n is a multiplication of

$$n \log_2 n + O(n)$$
 by $\log_2 n + O(1)$ bits

costing $n M_{\mathbb{Z}}(\log_2 n) + O(n)$ bit operations if done by blocks.

Algorithm. Repeat $u_n = n \cdot u_{n-1}$ for n = 1, 2, ..., N.

• Arithmetic complexity: O(N) ops

Optimal if computing $1!, \dots, N!$

• Bit complexity:

$$\operatorname{size}(\mathfrak{n}!) = 1 + \lfloor \log_2(\mathfrak{n}!) \rfloor = \mathfrak{n} \log_2 \mathfrak{n} + O(\mathfrak{n})$$
 (Stirling)

Step n is a multiplication of

$$n \log_2 n + O(n)$$
 by $\log_2 n + O(1)$ bits

costing n $M_{\mathbb{Z}}(\log_2 n) + O(n)$ bit operations if done by blocks.

Total cost:
$$\sum_{n=1}^{N} (n M_{\mathbb{Z}}(\log_2 n) + O(n))$$

Algorithm. Repeat $u_n = n \cdot u_{n-1}$ for n = 1, 2, ..., N.

• Arithmetic complexity: O(N) ops

Optimal if computing 1!, ..., N!

• Bit complexity:

$$\operatorname{size}(\mathfrak{n}!) = 1 + \lfloor \log_2(\mathfrak{n}!) \rfloor = \mathfrak{n} \log_2 \mathfrak{n} + O(\mathfrak{n})$$
 (Stirling)

Step n is a multiplication of

$$n \log_2 n + O(n)$$
 by $\log_2 n + O(1)$ bits

costing $n\,M_{\mathbb{Z}}(\log_2 n) + O(n)$ bit operations if done by blocks.

Total cost:
$$\sum_{n=1}^{N} \left(n \, M_{\mathbb{Z}}(\log_2 n) + O(n) \right) = \frac{N^2}{2} M_{\mathbb{Z}}(\log_2 N) + O(N^2) \, \text{bit ops}$$

Quasi-optimal for N terms, unsatisfactory for a single term

Nonsingular recurrences

Definition. We will say that the recurrence relation

$$b_s(n)\,u_{n+s} + \cdots + b_1(n)\,u_{n+1} + b_0(n)\,u_n = 0 \tag{Rec} \label{eq:Rec}$$

is nonsingular if $b_s(n) \neq 0$ for all $n \in \mathbb{N}$.

Proposition. If (Rec) is nonsingular, then

- its solution space has dimension s,
- any solution $(u_n)_{n\in\mathbb{N}}$ is determined by (u_0,\ldots,u_{s-1}) .

```
In other words: there is a basis of solutions of the form \begin{array}{c} u^{(0)}=\ (1,0,0,\dots,0,*,*,*,\dots)\\ u^{(1)}=\ (0,1,0,\dots,0,*,*,*,\dots)\\ \vdots\\ u^{(s-1)}=\ (0,0,0,\dots,1,*,*,*,\dots) \end{array}
```

(We will study singular recurrences in the next lecture.)

$$b_s(n) u_{n+s} + \cdots + b_1(n) u_{n+1} + b_0(n) u_n = 0$$

Problems. Given a nonsingular recurrence as above, initial values $u_{0:s}$, and $N \in \mathbb{N}$:

- a) Compute (u_0, \dots, u_{N-1})
- b) Compute u_N

Complexity models: operations in 𝐰 ("ops")

binary operations for $\mathbb{K} = \mathbb{Z}$

$$b_s(n) u_{n+s} + \cdots + b_1(n) u_{n+1} + b_0(n) u_n = 0$$

Problems. Given a nonsingular recurrence as above, initial values $u_{0:s}$, and $N \in \mathbb{N}$:

- a) Compute (u_0, \dots, u_{N-1})
- b) Compute u_N

Complexity models: operations in 𝐰 ("ops")

binary operations for $\mathbb{K} = \mathbb{Z}$

Bit sizes: for a single u_n ,

for $u_{0:N}$ (reached)

$$b_s(n) u_{n+s} + \cdots + b_1(n) u_{n+1} + b_0(n) u_n = 0$$

Problems. Given a nonsingular recurrence as above, initial values $u_{0:s}$, and $N \in \mathbb{N}$:

- a) Compute (u_0, \dots, u_{N-1})
- b) Compute u_N

Complexity models: operations in K ("ops")

binary operations for $\mathbb{K} = \mathbb{Z}$

Bit sizes: $O(n \log n)$ for a single u_n ,

for $u_{0:N}$ (reached)

$$b_s(n) u_{n+s} + \cdots + b_1(n) u_{n+1} + b_0(n) u_n = 0$$

Problems. Given a nonsingular recurrence as above, initial values $u_{0:s}$, and $N \in \mathbb{N}$:

- a) Compute (u_0,\dots,u_{N-1})
- b) Compute u_N

Complexity models: operations in \mathbb{K} ("ops")

binary operations for $\mathbb{K} = \mathbb{Z}$

Bit sizes: $O(n \log n)$ for a single u_n , $O(N^2 \log N)$ for $u_{0:N}$ (reached)

$$b_s(n) u_{n+s} + \cdots + b_1(n) u_{n+1} + b_0(n) u_n = 0$$

Problems. Given a nonsingular recurrence as above, initial values $u_{0:s}$, and $N \in \mathbb{N}$:

- a) Compute (u_0, \dots, u_{N-1})
- b) Compute u_N

Complexity models: operations in \mathbb{K} ("ops")

binary operations for $\mathbb{K} = \mathbb{Z}$

Bit sizes: $O(n \log n)$ for a single u_n , $O(N^2 \log N)$ for $u_{0:N}$ (reached)

Direct algorithm: repeat
$$u_n = -\frac{1}{b_s(n-s)} \left(b_{s-1}(n-s) u_{n-1} + \dots + b_0(n-s) u_{n-s} \right)$$

Arithmetic cost:

Over \mathbb{Z} with $b_s = 1$:

$$b_s(n) u_{n+s} + \cdots + b_1(n) u_{n+1} + b_0(n) u_n = 0$$

Problems. Given a nonsingular recurrence as above, initial values $u_{0:s}$, and $N \in \mathbb{N}$:

- a) Compute (u_0, \dots, u_{N-1})
- b) Compute u_N

Complexity models: operations in \mathbb{K} ("ops")

binary operations for $\mathbb{K} = \mathbb{Z}$

Bit sizes: $O(n \log n)$ for a single u_n , $O(N^2 \log N)$ for $u_{0:N}$ (reached)

Direct algorithm: repeat
$$u_n = -\frac{1}{b_s(n-s)} \left(b_{s-1}(n-s) u_{n-1} + \dots + b_0(n-s) u_{n-s} \right)$$

Arithmetic cost: O(N) ops Over \mathbb{Z} with $b_s = 1$:

$$b_s(n) u_{n+s} + \cdots + b_1(n) u_{n+1} + b_0(n) u_n = 0$$

Problems. Given a nonsingular recurrence as above, initial values $u_{0:s}$, and $N \in \mathbb{N}$:

- a) Compute (u_0, \dots, u_{N-1})
- b) Compute u_N

Complexity models: operations in \mathbb{K} ("ops")

binary operations for $\mathbb{K} = \mathbb{Z}$

Bit sizes: $O(n \log n)$ for a single u_n , $O(N^2 \log N)$ for $u_{0:N}$ (reached)

Direct algorithm: repeat
$$u_n = -\frac{1}{b_s(n-s)} \left(b_{s-1}(n-s) u_{n-1} + \dots + b_0(n-s) u_{n-s} \right)$$

Arithmetic cost: O(N) ops

Over \mathbb{Z} with $b_s = 1$: $O(N^2 M_{\mathbb{Z}}(\log N))$ binops

Quasi-optimal (for a fixed rec.) for problem a) \longrightarrow Focus on problem b)

2 Baby steps, giant steps

[Strassen 1976]

$$N! = \underbrace{1 \cdot 2 \cdots \ell \cdot \underbrace{(\ell+1) (\ell+2) \cdots (2 \ell)}_{N^{1/2} \text{ blocks of size } N^{1/2}} \underbrace{(\ell^2 - \ell + 1) (\ell^2 - \ell + 2) \cdots \ell^2}_{\ell^2 - \ell^2 - \ell^2} \qquad \ell = N^{1/2}$$

[Strassen 1976]

$$N! = \underbrace{1 \cdot 2 \cdots \ell \cdot (\ell+1) (\ell+2) \cdots (2 \ell) \cdots (\ell^2 - \ell + 1) (\ell^2 - \ell + 2) \cdots \ell^2}_{N^{1/2} \text{ blocks of size } N^{1/2}} \qquad \ell = N^{1/2}$$

Algorithm. *Input*: N *Output*: N!

- 1. Let $\ell = |N^{1/2}|$
- 2. Baby steps:
 - a. Compute $F = (x + 1) (x + 2) \cdots (x + \ell)$
- 3. Giant steps:
 - a. Compute $P_0 = F(0)$, $P_1 = F(\ell)$, $P_2 = F(2\ell)$, ..., $P_{\ell-1} = F((\ell-1)\ell)$ by multipoint evaluation
 - b. Return $P_0 P_1 \cdots P_{\ell-1} \cdot (\ell^2 + 1) \cdots (N-1) N$

[Strassen 1976]

$$N! = \underbrace{1 \cdot 2 \cdots \ell}_{N^{1/2} \text{ blocks of size } N^{1/2}} \underbrace{(\ell+1)(\ell+2)\cdots(2\ell)\cdots(\ell^2-\ell+1)(\ell^2-\ell+2)\cdots\ell^2}_{N^{1/2} \text{ blocks of size } N^{1/2}} \qquad \ell = N^{1/2}$$

Algorithm. *Input*: N *Output*: N!

- 1. Let $\ell = \lfloor N^{1/2} \rfloor$
- 2. Baby steps:
 - a. Compute $F = (x + 1) (x + 2) \cdots (x + \ell)$

 $O(M(\ell)\log \ell)$

- 3. Giant steps:
 - a. Compute $P_0 = F(0)$, $P_1 = F(\ell)$, $P_2 = F(2\ell)$, ..., $P_{\ell-1} = F((\ell-1)\ell)$ by multipoint evaluation
 - b. Return $P_0 P_1 \cdots P_{\ell-1} \cdot (\ell^2 + 1) \cdots (N-1) N$

[Strassen 1976]

$$N! = \underbrace{1 \cdot 2 \cdots \ell \cdot (\ell+1) (\ell+2) \cdots (2 \ell) \cdots (\ell^2 - \ell + 1) (\ell^2 - \ell + 2) \cdots \ell^2}_{N^{1/2} \text{ blocks of size } N^{1/2}} \qquad \ell = N^{1/2}$$

Algorithm. *Input*: N *Output*: N!

- 1. Let $\ell = \lfloor N^{1/2} \rfloor$
- 2. Baby steps:
 - a. Compute $F = (x + 1) (x + 2) \cdots (x + \ell)$

 $O(M(\ell)\log \ell)$

- 3. Giant steps:
 - a. Compute $P_0 = F(0)$, $P_1 = F(\ell)$, $P_2 = F(2\ell)$, ..., $P_{\ell-1} = F((\ell-1)\ell)$ by multipoint evaluation

 $O(M(\ell) \log \ell)$

b. Return $P_0 P_1 \cdots P_{\ell-1} \cdot (\ell^2 + 1) \cdots (N-1) N$

[Strassen 1976]

$$N! = \underbrace{1 \cdot 2 \cdots \ell \cdot (\ell+1) (\ell+2) \cdots (2 \ell) \cdots (\ell^2 - \ell + 1) (\ell^2 - \ell + 2) \cdots \ell^2}_{N^{1/2} \text{ blocks of size } N^{1/2}} \qquad \ell = N^{1/2}$$

Algorithm. *Input*: N *Output*: N!

- 1. Let $\ell = \lfloor N^{1/2} \rfloor$
- 2. Baby steps:
 - a. Compute $F = (x + 1) (x + 2) \cdots (x + \ell)$

 $O(M(\ell)\log \ell)$

- 3. Giant steps:
 - a. Compute $P_0 = F(0)$, $P_1 = F(\ell)$, $P_2 = F(2\ell)$, ..., $P_{\ell-1} = F((\ell-1)\ell)$ by multipoint evaluation

 $O(M(\ell)\log \ell)$

b. Return $P_0 P_1 \cdots P_{\ell-1} \cdot (\ell^2 + 1) \cdots (N-1) N$

O(*l*

[Strassen 1976]

 $\ell = N^{1/2}$

$$N! = \underbrace{1 \cdot 2 \cdots \ell \cdot (\ell+1) (\ell+2) \cdots (2 \ell) \cdots (\ell^2 - \ell + 1) (\ell^2 - \ell + 2) \cdots \ell^2}_{N^{1/2} \text{ blocks of size } N^{1/2}}$$

Algorithm. *Input*: N *Output*: N!

- 1. Let $\ell = |N^{1/2}|$
- 2. Baby steps:
 - a. Compute $F = (x + 1) (x + 2) \cdots (x + \ell)$

 $O(M(\ell)\log \ell)$

- 3. Giant steps:
 - a. Compute $P_0 = F(0)$, $P_1 = F(\ell)$, $P_2 = F(2\ell)$, ..., $P_{\ell-1} = F((\ell-1)\ell)$ by multipoint evaluation

 $O(M(\ell)\log \ell)$

b. Return $P_0 P_1 \cdots P_{\ell-1} \cdot (\ell^2 + 1) \cdots (N-1) N$

 $O(\ell)$

Deterministic integer factoring

[Strassen 1976]

Idea: if N is composite, $\lfloor \sqrt{N} \rfloor ! \wedge N$ is a nontrivial factor

Deterministic integer factoring

[Strassen 1976]

Idea: if N is composite, $\lfloor \sqrt{N} \rfloor ! \wedge N$ is a nontrivial factor

Algorithm. *Input*: N *Output*: a nontrivial factor of N, or 1 if N is prime

- 1. Let $\ell = \lceil N^{1/4} \rceil$
- 2. Baby steps:
 - a. Compute $F = (x+1)(x+2)\cdots(x+\ell) \in (\mathbb{Z}/N\mathbb{Z})[x]$
- 3. Giant steps:
 - a. Compute $P_0 = F(0), \dots, P_{\ell-1} = F((\ell-1)\ell)$ by mulpt ev.
 - b. Compute $P_0 \wedge N, \dots, P_{\ell-1} \wedge N$

Deterministic integer factoring

[Strassen 1976]

Idea: if N is composite, $\lfloor \sqrt{N} \rfloor ! \wedge N$ is a nontrivial factor

Algorithm. *Input*: N *Output*: a nontrivial factor of N, or 1 if N is prime

- 1. Let $\ell = \lceil N^{1/4} \rceil$
- 2. Baby steps:

a. Compute
$$F = (x+1) \ (x+2) \cdots (x+\ell) \in (\mathbb{Z} \ / \ N\mathbb{Z})[x] \qquad \qquad O(M(\ell) \log(\ell) \ M_{\mathbb{Z}}(h))$$

- 3. Giant steps:
 - a. Compute $P_0 = F(0), \dots, P_{\ell-1} = F((\ell-1)\ell)$ by mulpt ev. $O(M(\ell) \log(\ell) M_{\mathbb{Z}}(h))$
 - b. Compute $P_0 \wedge N, \dots, P_{\ell-1} \wedge N$ $O(\ell M_{\mathbb{Z}}(h) \log(h))$

$$h = 1 + \lfloor \log_2 N \rfloor$$

Deterministic integer factoring

[Strassen 1976]

Idea: if N is composite, $\lfloor \sqrt{N} \rfloor! \wedge N$ is a nontrivial factor

Algorithm. *Input*: N *Output*: a nontrivial factor of N, or 1 if N is prime

- 1. Let $\ell = \lceil N^{1/4} \rceil$
- 2. Baby steps:
 - a. Compute $F = (x+1) \, (x+2) \cdots (x+\ell) \in (\mathbb{Z} \, / \, N\mathbb{Z})[x] \qquad \qquad O(M(\ell) \log(\ell) \, M_\mathbb{Z}(h))$
- 3. Giant steps:
 - a. Compute $P_0 = F(0), \dots, P_{\ell-1} = F((\ell-1)\,\ell)$ by mulpt ev. $O(M(\ell)\log(\ell)\,M_\mathbb{Z}(h))$
 - b. Compute $P_0 \wedge N, \dots, P_{\ell-1} \wedge N$ $O(\ell M_{\mathbb{Z}}(h) \log(h))$

$$h = 1 + \left \lfloor \log_2 N \right \rfloor \hspace{1cm} \text{Total } O \left(M(N^{1/4}) \log(N)^{2 + o(1)} \right)$$

A TIME-SPACE TRADEOFF FOR LEHMAN'S DETERMINISTIC INTEGER FACTORIZATION METHOD

MARKUS HITTMEIR.

ABSTRACT. Fermat's well-known factorization algorithm is based on finding a representation of natural numbers N as the difference of squares. In 1895, Lawrence generalized this idea and applied it to multiples kN of the original number. A systematic approach to choose suitable values for k has been introduced by Lehman in 1974, which resulted in the first deterministic factorization algorithm considerably faster than trial division. In this paper, we construct a time-space tradeoff for Lawrence's generalization and apply it together with Lehman's result to obtain a deterministic integer factorization algorithm with runtime complexity $O(N^{2/9+o(1)})$. This is the first exponential improvement since the establishment of the $O(N^{1/4+o(1)})$ bound in 1977.

1. Introduction

We consider the problem of computing the prime factorization of natural numbers N. There is a large variety of probabilistic and heuristic factorization methods achieving subexponential complexity. We refer the reader to the survey [Len00] and to the monographs [Rie94] and [Wag13]. The focus of the present paper is a more theoretical aspect of the integer factorization problem, which concerns deterministic algorithms

AN EXPONENT ONE-FIFTH ALGORITHM FOR DETERMINISTIC INTEGER FACTORISATION

DAVID HARVEY

ABSTRACT. Hittmeir recently presented a deterministic algorithm that provably computes the prime factorisation of a positive integer N in $N^{2/9+o(1)}$ bit operations. Prior to this breakthrough, the best known complexity bound for this problem was $N^{1/4+o(1)}$, a result going back to the 1970s. In this paper we push Hittmeir's techniques further, obtaining a rigorous, deterministic factoring algorithm with complexity $N^{1/5+o(1)}$

1. Introduction

Let $\mathsf{F}(N)$ denote the time required to compute the prime factorisation of an integer $N \geq 2$. By "time" we mean "number of bit operations", or more precisely, the number of steps performed by a deterministic Turing machine with a fixed, finite number of linear tapes [Pap94]. All integers are assumed to be encoded in the usual binary representation.

In this paper we prove the following result:

Theorem 1.1. There is an integer factorisation algorithm achieving

$$\mathsf{F}(N) = O(N^{1/5} \log^{16/5} N).$$

Generalization to P-recursive sequences

[Chudnovsky & Chudnovsky 1987]

Write the recurrence in matrix form, pull out the denominator:

$$\begin{pmatrix} u_{n+1} \\ \vdots \\ u_{n+s-1} \\ u_{n+s} \end{pmatrix} = \frac{1}{b_s(n)} \underbrace{\begin{pmatrix} b_s(n) \\ & \ddots & \\ & b_s(n) \\ -b_0(n) & -b_1(n) & \cdots & -b_{s-1}(n) \end{pmatrix}}_{B(n)} \underbrace{\begin{pmatrix} u_n \\ \vdots \\ u_{n+s-2} \\ u_{n+s-1} \end{pmatrix}}_{U_n}$$

Then

$$U_N \! = \! \frac{1}{b_s(N-1)\cdots b_s(1)\,b_s(0)}\,B(N-1)\cdots B(1)\,B(0)\,U_0$$

B(n) = matrix of polynomials of degree < d

Algorithm. *Input*: $B \in K[n]^{s \times s}$ of deg <d, $N \in \mathbb{N}$ *Output*: $B(N-1) \cdots B(1) B(0)$

- 1. Write $N = \ell$ m with $\ell =$ and m = (assumed exact for simplicity)
- 2. Baby steps:
 - a. Compute $B(X + 1), ..., B(X + \ell 1)$
 - b. Compute $F(X) = B(X + \ell 1) \cdots B(X + 1) B(X)$
- 3. Giant steps:
 - a. Compute $F(0), F(\ell), \dots, F((m-1)\ell)$ simultaneously
 - b. Deduce and return the product $\mathsf{F}((\mathfrak{m}-1)\,\ell)\cdots\mathsf{F}(\ell)\,\mathsf{F}(0)$

Algorithm. *Input*: $B \in K[n]^{s \times s}$ of deg <d, $N \in \mathbb{N}$ *Output*: $B(N-1) \cdots B(1) B(0)$

- 1. Write $N = \ell$ m with $\ell =$ and m = (assumed exact for simplicity)
- 2. Baby steps:
 - a. Compute $B(X + 1), ..., B(X + \ell 1)$
 - b. Compute $F(X) = B(X + \ell 1) \cdots B(X + 1) B(X)$
- 3. Giant steps:
 - a. Compute $F(0), F(\ell), \dots, F((m-1)\ell)$ simultaneously
 - b. Deduce and return the product $\mathsf{F}((\mathfrak{m}-1)\,\ell)\cdots\mathsf{F}(\ell)\,\mathsf{F}(0)$

Algorithm. *Input*: $B \in K[n]^{s \times s}$ of deg <d, $N \in \mathbb{N}$ *Output*: $B(N-1) \cdots B(1) B(0)$

- 1. Write $N = \ell$ m with $\ell =$ and m = (assumed exact for simplicity)
- 2. Baby steps:
 - a. Compute $B(X + 1), ..., B(X + \ell 1)$
 - b. Compute $F(X) = B(X + \ell 1) \cdots B(X + 1) B(X)$

 $O(M(\ell d) \log(\ell) s^{\theta})$

- 3. Giant steps:
 - a. Compute $F(0), F(\ell), \dots, F((m-1)\ell)$ simultaneously
 - b. Deduce and return the product $\mathsf{F}((\mathsf{m}-1)\,\ell)\cdots\mathsf{F}(\ell)\,\mathsf{F}(0)$

 $\deg F(X) < \ell d$

```
Algorithm. Input: B \in \mathbb{K}[n]^{s \times s} of deg <d, N \in \mathbb{N} Output: B(N-1) \cdots B(1) B(0)
```

- 1. Write $N = \ell$ m with $\ell =$ and m = (assumed exact for simplicity)
- 2. Baby steps:
 - a. Compute $B(X+1), \ldots, B(X+\ell-1)$
 - b. Compute $F(X) = B(X + \ell 1) \cdots B(X + 1) B(X)$ $O(M(\ell d) \log(\ell) s^{\theta})$
- 3. Giant steps:
 - a. Compute $F(0), F(\ell), \dots, F((m-1)\,\ell)$ simultaneously $O(M(m)\log(m)\,s^\theta)$
 - b. Deduce and return the product $F((m-1) \ell) \cdots F(\ell) F(0)$

 $\deg F(X) < \ell d$ $\ell d \leqslant m$

Algorithm. *Input*:
$$B \in \mathbb{K}[n]^{s \times s}$$
 of deg $<$ d, $N \in \mathbb{N}$ *Output*: $B(N-1) \cdots B(1) B(0)$

- 1. Write $N = \ell$ m with $\ell = (N/d)^{1/2}$ and $m = (N/d)^{1/2}$ (assumed exact for simplicity)
- 2. Baby steps:
 - a. Compute $B(X+1), \ldots, B(X+\ell-1)$
 - b. Compute $F(X) = B(X + \ell 1) \cdots B(X + 1) B(X)$ $O(M(\ell d) \log(\ell) s^{\theta})$
- 3. Giant steps:
 - a. Compute $F(0), F(\ell), \ldots, F((m-1)\,\ell)$ simultaneously $O(M(m)\log(m)\,s^\theta)$
 - b. Deduce and return the product $F((m-1) \ell) \cdots F(\ell) F(0)$

 $\deg F(X) < \ell d$ $\ell d \leqslant m$

Algorithm. *Input*:
$$B \in \mathbb{K}[n]^{s \times s}$$
 of deg $<$ d, $N \in \mathbb{N}$ *Output*: $B(N-1) \cdots B(1) B(0)$

- 1. Write $N = \ell$ m with $\ell = (N/d)^{1/2}$ and $m = (N/d)^{1/2}$ (assumed exact for simplicity)
- 2. Baby steps:
 - a. Compute $B(X+1), \ldots, B(X+\ell-1)$
 - b. Compute $F(X) = B(X + \ell 1) \cdots B(X + 1) B(X)$

 $O(M(\ell d) \log(\ell) s^{\theta})$

- 3. Giant steps:
 - a. Compute $F(0), F(\ell), \dots, F((m-1)\ell)$ simultaneously

- $O(M(m)\log(m)s^{\theta})$
- b. Deduce and return the product $F((m-1) \ell) \cdots F(\ell) F(0)$

 $O(m s^{\theta})$

 $\deg F(X) < \ell \ d \qquad \ell \ d \leqslant m$

Algorithm. *Input*: $B \in \mathbb{K}[n]^{s \times s}$ of deg <d, $N \in \mathbb{N}$ *Output*: $B(N-1) \cdots B(1) B(0)$

- 1. Write $N = \ell$ m with $\ell = (N/d)^{1/2}$ and $m = (N/d)^{1/2}$ (assumed exact for simplicity)
- 2. Baby steps:
 - a. Compute $B(X+1), \ldots, B(X+\ell-1)$

 $O(\ell M(d) \log(d) s^2)$

b. Compute $F(X) = B(X + \ell - 1) \cdots B(X + 1) B(X)$

 $O(M(\ell\,d)\log(\ell)\,s^\theta)$

- 3. Giant steps:
 - a. Compute $F(0), F(\ell), \dots, F((m-1)\ell)$ simultaneously
- $O(M(m)\log(m)s^{\theta})$
- b. Deduce and return the product $F((m-1) \ell) \cdots F(\ell) F(0)$

 $O(m s^{\theta})$

 $\deg F(X) < \ell d$ $\ell d \le m$ naïvely step 2a takes $O(\ell d^2 s^2)$ ops

Exercise 7. Design an algorithm to compute B(x + a) from B(x) in $O(M(d) \log d)$ ops.

 $O(\ell M(d) \log(d) s^2)$

Fast polynomial matrix "factorial"

Algorithm. *Input*: $B \in \mathbb{K}[n]^{s \times s}$ of deg <d, $N \in \mathbb{N}$ *Output*: $B(N-1) \cdots B(1) B(0)$

- 1. Write $N = \ell$ m with $\ell = (N/d)^{1/2}$ and $m = (N/d)^{1/2}$ (assumed exact for simplicity)
- 2. Baby steps:
 - a. Compute $B(X+1), \ldots, B(X+\ell-1)$
 - b. Compute $F(X) = B(X + \ell 1) \cdots B(X + 1) B(X)$ $O(M(\ell d) \log(\ell) s^{\theta})$
- 3. Giant steps:
 - a. Compute $F(0), F(\ell), \dots, F((m-1)\ell)$ simultaneously $O(M(m)\log(m)s^{\theta})$
 - b. Deduce and return the product $F((m-1) \ell) \cdots F(\ell) F(0)$ $O(m s^{\theta})$

$$\deg F(X) < \ell \ d \qquad \ell \ d \leqslant m$$

$$\text{Total } O\Big(M(m) \log(m) \ s^\theta\Big)$$
 naïvely step 2a takes $O(\ell \ d^2 \ s^2)$ ops

Exercise 8. Design an algorithm to compute B(x + a) from B(x) in $O(M(d) \log d)$ ops.

Algorithm. *Notation as before.*

- 1. Compute $B(N-1)\cdots B(1)\,B(0)$ by the previous algorithm $O(M(\mathfrak{m})\log(\mathfrak{m})\,s^{\theta})$
- 2. Compute $b_s(N-1)\cdots b_s(1)\, b_s(0)$ by the previous algorithm $O(M(m)\log(m))$
- 3. Divide, return

Theorem. Let $(\mathfrak{u}^{(0)},\ldots,\mathfrak{u}^{(s-1)})$ be the basis of solutions s.t. $\mathfrak{u}_i^{(j)}=\delta_{i,j}$ of a nonsingular recurrence of order s and degree < d. One can compute the matrix $(\mathfrak{u}_{N+i}^{(j)})_{i,j}\in\mathbb{K}^{s\times s}$ in $O\Big(M(\sqrt{N\,d})\log(N\,d)\,s^{\theta}\Big)$ ops.

Corollary. One can compute the Nth term of a P-recursive sequence given by a nonsingular recurrence in $O(M(\sqrt{N}) \log N)$ ops.

3 Binary splitting

Algorithm. Use a product tree. That is, split the product as

$$N! = \underbrace{1 \cdot 2 \cdots m}_{P(0,m)} \cdot \underbrace{(m+1) \cdots N}_{P(m,N)}, \qquad m = \lfloor N/2 \rfloor,$$

and recurse.

Algorithm. Use a product tree. That is, split the product as

$$N! = \underbrace{1 \cdot 2 \cdots m}_{P(0,m)} \cdot \underbrace{(m+1) \cdots N}_{P(m,N)}, \qquad m = \lfloor N/2 \rfloor,$$

and recurse.

Using size(P(
$$\ell$$
, h)) \leq 1 + (h - ℓ) log₂ N, the cost C(ℓ , h) of computing P(ℓ , h) satisfies
$$C(\ell,h) \leq C(\ell,m) + C(m,h) + M_{\mathbb{Z}}(1 + \lceil (h-\ell)/2 \rceil \log_2 N) \qquad m = \lceil (\ell+h)/2 \rceil.$$

Algorithm. Use a product tree. That is, split the product as

$$N! = \underbrace{1 \cdot 2 \cdots m}_{P(0,m)} \cdot \underbrace{(m+1) \cdots N}_{P(m,N)}, \qquad m = \lfloor N/2 \rfloor,$$

and recurse.

Using size(
$$P(\ell, h)$$
) $\leq 1 + (h - \ell) \log_2 N$, the cost $C(\ell, h)$ of computing $P(\ell, h)$ satisfies

$$C(\ell,h) \leqslant C(\ell,m) + C(m,h) + M_{\mathbb{Z}} \big(1 + \lceil (h-\ell)/2 \rceil \log_2 N \big) \qquad m = \lfloor (\ell+h)/2 \rfloor.$$

The total cost of the multiplications at any given recursion depth is

$$\leqslant \sum_{i} M_{\mathbb{Z}} (1 + \lceil H_{i}/2 \rceil \log_{2} N)$$
 where $\sum_{i} H_{i} \leqslant N$

Algorithm. Use a product tree. That is, split the product as

$$N! = \underbrace{1 \cdot 2 \cdots m}_{P(0,m)} \cdot \underbrace{(m+1) \cdots N}_{P(m,N)}, \qquad m = \lfloor N/2 \rfloor,$$

and recurse.

Using
$$\operatorname{size}(P(\ell,h)) \leqslant 1 + (h-\ell) \log_2 N$$
, the cost $C(\ell,h)$ of computing $P(\ell,h)$ satisfies

$$C(\ell,h) \leqslant C(\ell,m) + C(m,h) + M_{\mathbb{Z}} \big(1 + \lceil (h-\ell)/2 \rceil \log_2 N \big) \qquad m = \lfloor (\ell+h)/2 \rfloor.$$

The total cost of the multiplications at any given recursion depth is

$$\begin{split} &\leqslant \sum_i \, M_{\mathbb{Z}} \big(1 + \lceil H_i/2 \rceil \log_2 N \big) \qquad \text{where} \quad \sum_i \, H_i \! \leqslant \! N \\ &\leqslant \! M_{\mathbb{Z}} \! \bigg(\frac{N}{2} \log_2 N + O(N) \bigg). \end{split}$$

Algorithm. Use a product tree. That is, split the product as

$$N! = \underbrace{1 \cdot 2 \cdots m}_{P(0,m)} \cdot \underbrace{(m+1) \cdots N}_{P(m,N)}, \qquad m = \lfloor N/2 \rfloor,$$

and recurse.

Using size(
$$P(\ell, h)$$
) $\leq 1 + (h - \ell) \log_2 N$, the cost $C(\ell, h)$ of computing $P(\ell, h)$ satisfies

$$C(\ell,h) \leqslant C(\ell,m) + C(m,h) + M_{\mathbb{Z}} (1 + \lceil (h-\ell)/2 \rceil \log_2 N) \qquad m = \lfloor (\ell+h)/2 \rfloor.$$

The total cost of the multiplications at any given recursion depth is

$$\begin{split} &\leqslant \sum_i \, M_{\mathbb{Z}} \big(1 + \lceil H_i/2 \rceil \log_2 N \big) \qquad \text{where} \quad \sum_i \, H_i \! \leqslant \! N \\ &\leqslant \! M_{\mathbb{Z}} \! \bigg(\frac{N}{2} \log_2 N + O(N) \bigg). \end{split}$$

Total $O(M_{\mathbb{Z}}(N \log N) \log N)$.

[Chudnovsky & Chudnovsky 1987]

$$b_s(n)\,u_{n+s}+\cdots+b_1(n)\,u_{n+1}+b_0(n)\,u_n\!=\!0,\quad b_i\!\in\!\mathbb{Z}[n]$$

Same idea as before:

write
$$U_n = (u_n, \dots, u_{n+s-1})$$
 and $U_N = \frac{1}{b_s(N-1) \cdots b_s(1) \, b_s(0)} \, B(N-1) \cdots B(1) \, B(0) \, U_0$

Algorithm.

- 1. Compute $B(\mathsf{N}-1)\cdots B(1)\,B(0)$ by binary splitting
- 2. Compute $b_s(\mathsf{N}-1)\cdots b_s(1)\,b_s(0)$ by binary splitting
- 3. Divide

Theorem. One can compute the Nth term of a sequence $(u_n) \in \mathbb{Q}^{\mathbb{N}}$ given by a nonsingular recurrence with coefficients in $\mathbb{Z}[n]$ in bit operations.

[Chudnovsky & Chudnovsky 1987]

$$b_s(n)\,u_{n+s}+\cdots+b_1(n)\,u_{n+1}+b_0(n)\,u_n\!=\!0,\quad b_i\!\in\!\mathbb{Z}[n]$$

Same idea as before:

write
$$U_n = (u_n, \dots, u_{n+s-1})$$
 and $U_N = \frac{1}{b_s(N-1) \cdots b_s(1) b_s(0)} B(N-1) \cdots B(1) B(0) U_0$

Algorithm.

(costs for fixed recurrence, hides dependency on s and d)

- 1. Compute $B(N-1) \cdots B(1) B(0)$ by binary splitting $O(M(n \log n) \log(n))$
- $\text{2. Compute } b_s(\mathsf{N}-1)\cdots b_s(1)\ b_s(0)\ \text{by binary splitting} \qquad \qquad \mathsf{O}(\mathsf{M}(\mathfrak{n}\log\mathfrak{n})\log(\mathfrak{n}))$
- 3. Divide

Theorem. One can compute the Nth term of a sequence $(u_n) \in \mathbb{Q}^{\mathbb{N}}$ given by a nonsingular recurrence with coefficients in $\mathbb{Z}[n]$ in bit operations.

[Chudnovsky & Chudnovsky 1987]

$$b_s(n)\,u_{n+s}+\cdots+b_1(n)\,u_{n+1}+b_0(n)\,u_n\!=\!0,\quad b_i\!\in\!\mathbb{Z}[n]$$

Same idea as before:

write
$$U_n = (u_n, \dots, u_{n+s-1})$$
 and $U_N = \frac{1}{b_s(N-1) \cdots b_s(1) b_s(0)} B(N-1) \cdots B(1) B(0) U_0$

Algorithm. (costs for fixed recurrence, hides dependency on s and d)

- 1. Compute $B(N-1)\cdots B(1)\,B(0)$ by binary splitting $O(M(n\log n)\log(n))$
- 2. Compute $b_s(N-1)\cdots b_s(1)\,b_s(0)$ by binary splitting $O(M(n\log n)\log(n))$
- 3. Divide (gcd!) $O(M(n\log n)\log(n))$

Theorem. One can compute the Nth term of a sequence $(\mathfrak{u}_n) \in \mathbb{Q}^{\mathbb{N}}$ given by a nonsingular recurrence with coefficients in $\mathbb{Z}[n]$ in $O(M(n \log^2 n))$ bit operations.

Problem. Compute the coefficient of x^{2N} in

$$(1+x)^{2N}(1+x+x^2)^N$$
.

An application

[Flajolet & Salvy 1997]

Problem. Compute the coefficient of x^{2N} in

$$(1+x)^{2N}(1+x+x^2)^N$$
.

Let $f(x) = (1+x)^{2N} (1+x+x^2)^N$. One has

$$\frac{f'(x)}{f(x)} = 2 N \frac{1}{1+x} + N \frac{2x+1}{1+x+x^2}.$$

Convert ODE to recurrence, use binary splitting.

The case of hypergeometric sums

Goal. Compute
$$\Sigma_N = \sum_{n=0}^{N-1} u_n$$
 where $u_{n+1} = \frac{p(n)}{q(n)} u_n$, $u_0 = 1$

Last week's version.

$$\text{Write } \sum_{n=\ell}^{h-1} u_n = \sum_{n=\ell}^{h-1} \frac{p(n-1) \cdots p(\ell)}{q(n-1) \cdots q(\ell)} u_\ell = \frac{T(\ell,h)}{Q(\ell,h)} u_\ell \qquad \text{where } Q(\ell,h) = q(h-1) \cdots q(\ell)$$

$$u_h = \frac{P(\ell,h)}{Q(\ell,h)} u_\ell \qquad \qquad P(\ell,h) = p(h-1) \cdots p(\ell)$$

$$\text{Then } \sum_{n=\ell}^{h-1} u_n = \sum_{n=\ell}^{m-1} u_n + \sum_{n=m}^{h-1} u_n \quad \text{gives} \qquad \frac{T(\ell,h)}{Q(\ell,h)} u_\ell = \frac{T(\ell,m)}{Q(\ell,m)} u_\ell + \frac{T(m,h)}{Q(m,h)} \frac{P(\ell,m)}{Q(\ell,m)} u_\ell$$

$$T(\ell,h) = Q(m,h) T(\ell,m) + P(\ell,m) T(m,h),$$

Matrix version.

$$\begin{pmatrix} u_{n+1} \\ \Sigma_{n+1} \end{pmatrix} = \frac{1}{q(n)} \underbrace{\begin{pmatrix} p(n) & 0 \\ q(n) & q(n) \end{pmatrix}}_{B(n)} \begin{pmatrix} u_n \\ \Sigma_n \end{pmatrix}, \qquad B(h-1) \cdots B(\ell) = \begin{pmatrix} P(\ell,h) & 0 \\ T(\ell,h) & Q(\ell,h) \end{pmatrix}$$

An exercise for next time

Exercise. Give an algorithm to convert an n-bit number from base 2 to base 10 in $O(M_{\mathbb{Z}}(n) \log n)$ bit operations, where $M_{\mathbb{Z}}(n)$ is a bound on the cost of n-bit integer multiplication.

4 Partial sums of D-finite series

(why?)

Application to sums of D-finite series

Let
$$\Sigma_n = \sum_{k=0}^{n-1} u_k \xi^k$$
 for some fixed $\xi \in \mathbb{R}$.

If
$$(u_n)_{n\in\mathbb{N}}$$
 satisfies a rec. with poly. coeffs, then (Σ_n) too.

Application to sums of D-finite series

Let
$$\Sigma_n = \sum_{k=0}^{n-1} u_k \xi^k$$
 for some fixed $\xi \in \mathbb{R}$.

If $(u_n)_{n\in\mathbb{N}}$ satisfies a rec. with poly. coeffs, then (Σ_n) too.

(why?)

Better formulation:

$$\begin{pmatrix} u_{n+1} \xi^{n+1} \\ \vdots \\ u_{n+s} \xi^{n+1} \\ \Sigma_{n+1} \end{pmatrix} = \frac{1}{b_s(n)} \begin{pmatrix} b(n) \xi \\ \vdots \\ b(n) \xi \end{pmatrix} = \begin{pmatrix} u_n \xi^n \\ \vdots \\ u_{n+s-1} \xi^n \\ \Sigma_n \end{pmatrix}$$

$$\begin{pmatrix} u_{n+1} \xi^{n+1} \\ \vdots \\ u_{n+s} \xi^{n+1} \\ \Sigma_{n+1} \end{pmatrix} = \frac{1}{b_s(n)} \begin{pmatrix} B(n) \xi \\ b_s(n) & 0 & \cdots & 0 & b_s(n) \end{pmatrix} \begin{pmatrix} u_n \xi^n \\ \vdots \\ u_{n+s-1} \xi^n \\ \Sigma_n \end{pmatrix}$$

$$\begin{pmatrix} u_{n+1} \xi^{n+1} \\ \vdots \\ u_{n+s} \xi^{n+1} \\ \Sigma_{n+1} \end{pmatrix} = \frac{1}{b_s(n)} \begin{pmatrix} B(n) \xi \\ b_s(n) & 0 & \cdots & 0 & b_s(n) \end{pmatrix} \begin{pmatrix} u_n \xi^n \\ \vdots \\ u_{n+s-1} \xi^n \\ \Sigma_n \end{pmatrix}$$

$$\begin{pmatrix} u_{n+1}\xi^{n+1} \\ \vdots \\ u_{n+s}\xi^{n+1} \\ \Sigma_{n+1} \end{pmatrix} = \frac{1}{b_s(n)} \begin{pmatrix} b_s(n)\xi \\ \vdots \\ b_s(n) & 0 & \cdots & 0 & b_s(n) \end{pmatrix} \begin{pmatrix} u_n\xi^n \\ \vdots \\ u_{n+s-1}\xi^n \\ \Sigma_n \end{pmatrix}$$

Working with p-bit approximations and ignoring rounding errors:

$$\Sigma_N$$
 to p-bit precision in $O\left(M(\sqrt{N})\log(N)\,M_{\mathbb{Z}}(p)\right)$ ops

$$\begin{pmatrix} u_{n+1}\xi^{n+1} \\ \vdots \\ u_{n+s}\xi^{n+1} \\ \Sigma_{n+1} \end{pmatrix} = \frac{1}{b_s(n)} \begin{pmatrix} b_s(n)\xi \\ \vdots \\ b_s(n) & 0 & \cdots & 0 & b_s(n) \end{pmatrix} \begin{pmatrix} u_n\xi^n \\ \vdots \\ u_{n+s-1}\xi^n \\ \Sigma_n \end{pmatrix}$$

Working with p-bit approximations and ignoring rounding errors:

$$\Sigma_N$$
 to p-bit precision in $O\left(M(\sqrt{N})\log(N)\,M_{\mathbb{Z}}(p)\right)$ ops

Target accuracy 2^{-t} typically requires N=O(t) (geometric convergence) If rounding errors negligible, working precision $\mathfrak{p}=t+O(1)$

 \leadsto evaluation of D-finite series to precision t in $\tilde{O}(t^{3/2})$ ops

Binary splitting for D-finite series

Again:
$$\Sigma_n = \sum_{k=0}^{n-1} u_k \xi^k$$
 satisfies a recurrence

(Note that ξ enters into the recurrence!)

The previous result on binary splitting yields:

Corollary. One can evaluate the Nth partial sum of a fixed D-finite series at a fixed point $\xi \in \mathbb{Q}$ in $O(M(N \log^2 N))$ bit operations.

Typical case: N = O(t)t = target bit accuracy • $e = \exp(1)$ with error $\leq 2^{-t}$ in $O(M(t \log t))$ bit operations

• $e = \exp(1)$ with error $\leq 2^{-t}$ in $O(M(t \log t))$ bit operations

$$e = \sum_{k=0}^{n-1} \frac{1}{k!} + \underbrace{\frac{1}{n!} \sum_{k=0}^{\infty} \frac{1}{(n+1)\cdots(n+k)}}_{\leqslant e/n!}, \qquad \frac{e}{n!} \leqslant 2^{-t} \text{ for } n = \frac{t + o(t)}{\log_2 t}$$

• $e = \exp(1)$ with error $\leq 2^{-t}$ in $O(M(t \log t))$ bit operations

$$e = \sum_{k=0}^{n-1} \frac{1}{k!} + \underbrace{\frac{1}{n!} \sum_{k=0}^{\infty} \frac{1}{(n+1)\cdots(n+k)}}_{\leqslant e/n!}, \qquad \frac{e}{n!} \leqslant 2^{-t} \text{ for } n = \frac{t + o(t)}{\log_2 t}$$

Cost of the binary splitting method: $O\left(M\left(\frac{t}{\log_2 t}\log\left(\frac{t}{\log_2 t}\right)^2\right)\right) = O(M(t\log t)).$

• $e = \exp(1)$ with error $\leq 2^{-t}$ in $O(M(t \log t))$ bit operations

$$e = \sum_{k=0}^{n-1} \frac{1}{k!} + \underbrace{\frac{1}{n!} \sum_{k=0}^{\infty} \frac{1}{(n+1)\cdots(n+k)}}_{\leqslant e/n!}, \qquad \frac{e}{n!} \leqslant 2^{-t} \text{ for } n = \frac{t+o(t)}{\log_2 t}$$
Cost of the hinery explitting method: $O\left(M\left(-\frac{t}{n}, \log_2 \left(-\frac{t}{n}\right)^2\right)\right) = O(M)$

Cost of the binary splitting method: $O\left(M\left(\frac{t}{\log_2 t}\log\left(\frac{t}{\log_2 t}\right)^2\right)\right) = O(M(t\log t)).$

• $\ln(2)$ in $O(M(t \log(t)^2))$ bit operations:

• $e = \exp(1)$ with error $\leq 2^{-t}$ in $O(M(t \log t))$ bit operations

$$e = \sum_{k=0}^{n-1} \frac{1}{k!} + \underbrace{\frac{1}{n!} \sum_{k=0}^{\infty} \frac{1}{(n+1)\cdots(n+k)}}_{\leqslant e/n!}, \qquad \frac{e}{n!} \leqslant 2^{-t} \text{ for } n = \frac{t + o(t)}{\log_2 t}$$

Cost of the binary splitting method: $O\left(M\left(\frac{t}{\log_2 t}\log\left(\frac{t}{\log_2 t}\right)^2\right)\right) = O(M(t\log t)).$

• $\ln(2)$ in $O(M(t \log(t)^2))$ bit operations: $\ln(2) = -\ln(1+\xi)$ with $\xi = -\frac{1}{2}$

• $e = \exp(1)$ with error $\leq 2^{-t}$ in $O(M(t \log t))$ bit operations

$$e = \sum_{k=0}^{n-1} \frac{1}{k!} + \underbrace{\frac{1}{n!} \sum_{k=0}^{\infty} \frac{1}{(n+1)\cdots(n+k)}}_{\leqslant e/n!}, \qquad \frac{e}{n!} \leqslant 2^{-t} \text{ for } n = \frac{t + o(t)}{\log_2 t}$$

Cost of the binary splitting method: $O\left(M\left(\frac{t}{\log_2 t}\log\left(\frac{t}{\log_2 t}\right)^2\right)\right) = O(M(t\log t)).$

• $\ln(2)$ in $O(M(t \log(t)^2))$ bit operations: $\ln(2) = -\ln(1+\xi)$ with $\xi = -\frac{1}{2}$ Radius of convergence = 1 \Rightarrow general term = $O(2^{-k})$ \Rightarrow need O(t) terms.

• $e = \exp(1)$ with error $\leq 2^{-t}$ in $O(M(t \log t))$ bit operations

$$e = \sum_{k=0}^{n-1} \frac{1}{k!} + \underbrace{\frac{1}{n!} \sum_{k=0}^{\infty} \frac{1}{(n+1)\cdots(n+k)}}_{\leqslant e/n!}, \qquad \frac{e}{n!} \leqslant 2^{-t} \text{ for } n = \frac{t + o(t)}{\log_2 t}$$

Cost of the binary splitting method: $O\left(M\left(\frac{t}{\log_2 t}\log\left(\frac{t}{\log_2 t}\right)^2\right)\right) = O(M(t\log t)).$

• $\ln(2)$ in $O(M(t \log(t)^2))$ bit operations: $\ln(2) = -\ln(1+\xi)$ with $\xi = -\frac{1}{2}$ Radius of convergence $= 1 \implies \text{general term} = O(2^{-k}) \implies \text{need } O(t)$ terms.

•
$$\frac{1}{\pi} = \frac{12}{c^{3/2}} \sum_{n=0}^{\infty} (-1)^n \frac{(6n)!}{(3n)! \, n!^3} \frac{(an+b)}{c^{3n}},$$
 $\begin{cases} a = 545140134 \\ b = 13591409 \\ c = 640320 \end{cases}$ [Chudnovsky² 1987]

1 hypergeometric series, 1 square root, 1 division

Used in record computations — although another algo. yields t digits of π in only $O(M(t) \log t)$ bit ops [Salamin 1976, Brent 1978]

Dependency on the evaluation point

$$\begin{pmatrix} u_{n+1}\xi^{n+1} \\ \vdots \\ u_{n+s}\xi^{n+1} \\ \Sigma_{n+1} \end{pmatrix} = \frac{1}{b_s(n)} \begin{pmatrix} b_s(n)\xi \\ \vdots \\ b_s(n) & 0 & \cdots & 0 & b_s(n) \end{pmatrix} \begin{pmatrix} u_n\xi^n \\ \vdots \\ u_{n+s-1}\xi^n \\ \Sigma_n \end{pmatrix}$$

If ξ is of bit size h, then (for a fixed differential equation):

- the matrices, taken at $n \leq N$, have bit size $O(h + \log N)$,
- the cost of computing the product tree for N terms becomes

$$O\Big(M\Big(\overbrace{N\underbrace{(h+\log N)}_{\text{size of each leaf}}}\Big)\underbrace{\log N}_{\text{depth}}\Big).$$

If N and h are both $\Theta(t)$, the cost becomes quadratic in t!

5 The "bit-burst" method

[Brent 1976]

Goal: for a real number $\frac{1}{2} \le \xi < 1$, compute $\exp(\xi)$ with error $\le 2^{-t}$ in $\tilde{O}(t)$ bit ops.

We assume that a sufficiently accurate approximation of ξ is given (t + O(1) bits suffice)

[Brent 1976]

Fast high-precision evaluation of the exponential function

Goal: for a real number $\frac{1}{2} \le \xi < 1$, compute $\exp(\xi)$ with error $\le 2^{-t}$ in $\tilde{O}(t)$ bit ops.

We assume that a sufficiently accurate approximation of ξ is given (t+O(1)) bits suffice)

$$\begin{array}{lll} \text{Write} & \xi & = & 0.\underline{\xi_{1}}\underline{\xi_{2}}\underline{\xi_{3}}\underline{\xi_{4}}\underline{\xi_{5}}\underline{\xi_{6}}\underline{\xi_{7}}\underline{\xi_{8}}\underline{\xi_{9}}\underline{\xi_{10}}\underline{\xi_{11}}\underline{\xi_{12}}\underline{\xi_{13}}\underline{\xi_{14}}\underline{\xi_{15}}\underline{\xi_{16}}\underline{\xi_{17}}\dots\\ & & = & m_{0}+m_{1}+m_{2}+\dots+m_{K-1} & \text{where } \begin{cases} m_{k}\leqslant 2^{-2^{k}+1}\\ m_{k} \text{ fits on } 2^{k} \text{ bits} \end{cases} \\ \\ \text{Then} & \exp(\xi) & = & \exp(m_{0})\exp(m_{1})\dots\exp(m_{K-1}) & \text{and } K=O(\log t) \end{cases}$$

Remark: can reduce to $\xi \in [1/2, 1)$ using $\exp(2x) = \exp(x)^2$.

Fast high-precision evaluation of the exponential function [Brent 1976]

Goal: for a real number $\frac{1}{2} \le \xi < 1$, compute $\exp(\xi)$ with error $\le 2^{-t}$ in $\tilde{O}(t)$ bit ops.

We assume that a sufficiently accurate approximation of ξ is given (t + O(1) bits suffice)

$$\begin{array}{lll} \text{Write} & \xi &=& 0.\underline{\xi_1}\underline{\xi_2}\underline{\xi_3}\underline{\xi_4}\underline{\xi_5}\underline{\xi_6}\underline{\xi_7}\underline{\xi_8}\underline{\xi_9}\underline{\xi_{10}}\underline{\xi_{11}}\underline{\xi_{12}}\underline{\xi_{13}}\underline{\xi_{14}}\underline{\xi_{15}}\underline{\xi_{16}}\underline{\xi_{17}}... \\ & = & m_0+m_1+m_2+\dots+m_{K-1} & \text{where } \begin{cases} m_k\leqslant 2^{-2^k+1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases} \\ \text{Then} & \exp(\xi) &= \exp(m_0)\exp(m_1)\dots\exp(m_{K-1}) & \text{and } K=O(\log t) \end{cases}$$

Algorithm. Evaluate each m_k by binary splitting, then multiply.

The final multiplications cost $O(M(t) \log t)$ in total.

Remark: can reduce to $\xi \in [1/2, 1)$ using $\exp(2x) = \exp(x)^2$.

$$\xi \ = \ m_0 + m_1 + m_2 + \dots + m_{K-1}$$

where
$$\begin{cases} m_k \leqslant 2^{-2^k+1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases}$$

$$\xi = m_0 + m_1 + m_2 + \dots + m_{K-1}$$
 where $\begin{cases} m_k \leqslant 2^{-2^k + 1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases}$

Computation of a single $\exp(m_k)$:

• Because $m_k \le 2^{-2^k+1}$, only $N = O(2^{-k}t)$ terms of the series are needed

$$\xi = m_0 + m_1 + m_2 + \dots + m_{K-1}$$
 where $\begin{cases} m_k \leqslant 2^{-2^k + 1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases}$

- Because $m_k \le 2^{-2^k+1}$, only $N = O(2^{-k}t)$ terms of the series are needed
- Cost of binary splitting:

$$O\left(M\left(N\left(\frac{h + \log N}{N}\right)\right) \frac{\log N}{\text{depth}}\right)$$

$$\xi = m_0 + m_1 + m_2 + \dots + m_{K-1}$$
 where $\begin{cases} m_k \leqslant 2^{-2^k + 1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases}$

- Because $m_k \le 2^{-2^k+1}$, only $N = O(2^{-k}t)$ terms of the series are needed
- Cost of binary splitting:

$$O\left(M(\underbrace{N(h+\log N))}_{\text{size of each leaf}} \underbrace{\log N}_{\text{depth}}\right) = O\left(M(2^{-k}t\underbrace{(2^k+\log t)}_{\text{size of each leaf}}) \underbrace{\log t}_{\text{depth}}\right)$$

$$\xi = m_0 + m_1 + m_2 + \dots + m_{K-1}$$
 where $\begin{cases} m_k \leqslant 2^{-2^k + 1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases}$

- Because $m_k \le 2^{-2^k+1}$, only $N = O(2^{-k}t)$ terms of the series are needed
- Cost of binary splitting:

$$O\Big(M(\underbrace{N(h+\log N))}_{\text{size of each leaf}})\underbrace{\log N}_{\text{depth}}\Big) = O\Big(M(2^{-k}t\underbrace{(2^k+\log t)}_{\text{size of each leaf}})\underbrace{\log t}_{\text{depth}}\Big)$$

$$= O(M(t\log t + 2^{-k}t\log^2 t))$$

$$\xi = m_0 + m_1 + m_2 + \dots + m_{K-1}$$
 where $\begin{cases} m_k \leqslant 2^{-2^k + 1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases}$

- Because $m_k \le 2^{-2^k+1}$, only $N = O(2^{-k}t)$ terms of the series are needed
- Cost of binary splitting:

$$O\left(M(N(h+\log N))\log N\right) = O\left(M(2^{-k}t(2^k+\log t))\log t\right)$$

$$= O\left(M(10gt+2^{-k}t\log^2 t)\right)$$

$$= O(M(t\log t+2^{-k}t\log^2 t))$$

Total:
$$\sum_{k=0}^{K-1} C M(t \log t + 2^{-k} t \log^2 t)$$

$$\xi \ = \ m_0 + m_1 + m_2 + \dots + m_{K-1} \qquad \qquad \text{where } \begin{cases} m_k \leqslant 2^{-2^k + 1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases}$$

- Because $m_k \le 2^{-2^k+1}$, only $N = O(2^{-k}t)$ terms of the series are needed
- Cost of binary splitting:

$$O\Big(M(\overbrace{N(h+\log N)}^{\text{size of each row}})\underbrace{\log N}_{\text{size of each leaf}}\Big) = O\Big(M(2^{-k}t\underbrace{(2^k+\log t)}_{\text{size of each leaf}})\underbrace{\log t}_{\text{depth}}\Big)$$

$$= O(M(t\log t + 2^{-k}t\log^2 t))$$

$$\text{Total:} \sum_{k=0}^{K-1} \, C \, M(t \log t + 2^{-k} t \log^2 t) \leqslant C \cdot M \Biggl(\sum_{k=0}^{K-1} \, \left(t \log t + 2^{-k} t \log^2 t \right) \Biggr)$$

$$\xi = m_0 + m_1 + m_2 + \dots + m_{K-1}$$
 where $\begin{cases} m_k \leqslant 2^{-2^k + 1} \\ m_k \text{ fits on } 2^k \text{ bits} \end{cases}$

- Because $m_k \le 2^{-2^k+1}$, only $N = O(2^{-k}t)$ terms of the series are needed
- Cost of binary splitting:

$$O\Big(M(\overbrace{N(h+\log N)}^{\text{size of each row}}) \underbrace{\log N}_{\text{size of each leaf}} \Big) = O\Big(M(2^{-k}t\underbrace{(2^k+\log t)}_{\text{size of each leaf}}) \underbrace{\log t}_{\text{depth}}\Big)$$

$$= O(M(t\log t + 2^{-k}t\log^2 t))$$

$$\text{Total:} \sum_{k=0}^{K-1} \, C \, M(t \log t + 2^{-k} t \log^2 t) \leqslant C \cdot M \Biggl(\sum_{k=0}^{K-1} \, \left(t \log t + 2^{-k} t \log^2 t \right) \Biggr) = O(M(t \log(t)^2))$$

[Chudnovsky & Chudnovsky 1987]

Fix a differential operator L; assume that 0 is an ordinary point.

Consider a basis y_1, \dots, y_r of analytic solutions.

[Chudnovsky & Chudnovsky 1987]

Fix a differential operator L; assume that 0 is an ordinary point.

Consider a basis y_1, \dots, y_r of analytic solutions.

• Suppose that the series expansion of y_k converges on $\{|\xi| < \rho\}$.

Binary splitting $\rightsquigarrow y(\xi)$ for $|\xi| \leq \frac{1}{2} \rho$ of bit size O(1) in $\tilde{O}(t)$ bit ops.

[Chudnovsky & Chudnovsky 1987]

Fix a differential operator L; assume that 0 is an ordinary point.

Consider a basis y_1, \dots, y_r of analytic solutions.

• Suppose that the series expansion of y_k converges on $\{|\xi| < \rho\}$.

Binary splitting $\rightsquigarrow y(\xi)$ for $|\xi| \leq \frac{1}{2} \rho$ of bit size O(1) in $\tilde{O}(t)$ bit ops.

[Chudnovsky & Chudnovsky 1987]

Fix a differential operator L; assume that 0 is an ordinary point.

Consider a basis y_1, \dots, y_r of analytic solutions.

- Suppose that the series expansion of y_k converges on $\{|\xi| < \rho\}$. Binary splitting $\leadsto y(\xi)$ for $|\xi| \leqslant \frac{1}{2} \rho$ of bit size O(1) in $\tilde{O}(t)$ bit ops.
- Derivatives have the same radius of convergence, are still D-finite.

$$\rightsquigarrow (y(\xi), y'(\xi), \dots, y^{(r-1)}(\xi)) \text{ in } \tilde{O}(t) \text{ ops}$$

[Chudnovsky & Chudnovsky 1987]

Fix a differential operator L; assume that 0 is an ordinary point.

Consider a basis y_1, \dots, y_r of analytic solutions.

- Suppose that the series expansion of y_k converges on $\{|\xi| < \rho\}$. Binary splitting $\leadsto y(\xi)$ for $|\xi| \leqslant \frac{1}{2} \rho$ of bit size O(1) in $\tilde{O}(t)$ bit ops.
- Derivatives have the same radius of convergence, are still D-finite.

$$\leadsto (y(\xi), y'(\xi), \dots, y^{(r-1)}(\xi)) \text{ in } \tilde{O}(t) \text{ ops}$$

 $\bullet \ \ \text{We can do that for} \ y_1, \dots, y_r \leadsto \left(\begin{array}{ccc} y_1(\xi) & \cdots & y_r(\xi) \\ \vdots & & \vdots \\ y_1^{(r-1)}(\xi) & \cdots & y_r^{(r-1)}(\xi) \end{array} \right) \text{in} \ \tilde{O}(t) \ \text{ops}$

[Chudnovsky & Chudnovsky 1987]

Fix a differential operator L; assume that 0 is an ordinary point.

Consider a basis y_1, \dots, y_r of analytic solutions.

- Suppose that the series expansion of y_k converges on $\{|\xi| < \rho\}$. Binary splitting $\leadsto y(\xi)$ for $|\xi| \leqslant \frac{1}{2} \rho$ of bit size O(1) in $\tilde{O}(t)$ bit ops.
- Derivatives have the same radius of convergence, are still D-finite. $\rightsquigarrow (u(\xi), u'(\xi), \dots, u^{(r-1)}(\xi))$ in $\tilde{O}(t)$ ops
- $\bullet \ \ \text{We can do that for} \ y_1, \dots, y_r \leadsto \left(\begin{array}{ccc} y_1(\xi) & \cdots & y_r(\xi) \\ \vdots & & \vdots \\ y_1^{(r-1)}(\xi) & \cdots & y_r^{(r-1)}(\xi) \end{array} \right) \text{in} \ \tilde{O}(t) \ \text{ops}$
- By multiplying these matrices for steps corresponding to a decomposition

$$\xi \! = \! 0.\xi_{1}\xi_{2}\xi_{3}\xi_{4}\xi_{5}\xi_{6}\xi_{7}\xi_{8}\xi_{9}\xi_{10}\xi_{11}\xi_{12}\xi_{13}\xi_{14}\xi_{15}\xi_{16}\xi_{17}\dots$$

we can evaluate the solutions at complex points of bit size t in $\tilde{O}(t)$ ops.

[Chudnovsky & Chudnovsky 1987, van der Hoeven 1999, \ldots]

• By multiplying matrices $\begin{pmatrix} y_1(\xi) & \cdots & y_r(\xi) \\ \vdots & & \vdots \\ y_1^{(r-1)}(\xi) & \cdots & y_r^{(r-1)}(\xi) \end{pmatrix},$ we can also evaluate the (analytic continuation of) the solutions outside the disk $|\xi| < \rho$.

[Chudnovsky & Chudnovsky 1987, van der Hoeven 1999, ...]

 $\begin{tabular}{ll} \bullet & \begin{tabular}{ll} By multiplying matrices & $y_1(\xi)$ & \cdots & $y_r(\xi)$ \\ \vdots & \vdots & \vdots \\ $y_1^{(r-1)}(\xi)$ & \cdots & $y_r^{(r-1)}(\xi)$ \\ we can also evaluate the (analytic continuation of) the solutions outside the disk $|\xi| < \rho$. \\ \end{tabular}$

• For fixed ξ , computing $y(\xi)$ with an error $\leq 2^{-t}$ requires O(t) digits of ξ .

[Chudnovsky & Chudnovsky 1987, van der Hoeven 1999, ...]

 $\begin{tabular}{ll} \bullet & \mbox{ By multiplying matrices} \left(\begin{array}{ccc} y_1(\xi) & \cdots & y_r(\xi) \\ \vdots & & \vdots \\ y_1^{(r-1)}(\xi) & \cdots & y_r^{(r-1)}(\xi) \end{array} \right) , \\ & \mbox{ we can also evaluate the (analytic continuation of)} \\ & \mbox{ the solutions outside the disk } |\xi| < \rho. \\ \end{aligned}$

- For fixed ξ , computing $y(\xi)$ with an error $\leq 2^{-t}$ requires O(t) digits of ξ .
- All necessary error bounds can be computed automatically.

[Chudnovsky & Chudnovsky 1987, van der Hoeven 1999, ...]

 $\label{eq:continuity} \bullet \mbox{ By multiplying matrices} \left(\begin{array}{ccc} y_1(\xi) & \cdots & y_r(\xi) \\ \vdots & & \vdots \\ y_1^{(r-1)}(\xi) & \cdots & y_r^{(r-1)}(\xi) \end{array} \right) \!\!\! , \\ \mbox{ we can also evaluate the (analytic continuation of)} \\ \mbox{ the solutions outside the disk } |\xi| < \rho.$

- For fixed ξ , computing $y(\xi)$ with an error $\leq 2^{-t}$ requires O(t) digits of ξ .
- All necessary error bounds can be computed automatically.

Pseudo-theorem: "one can evaluate a **fixed** D-finite function at a **fixed** point $\in \mathbb{C}$ with an error $\leq 2^{-t}$ in $\tilde{O}(t)$ bit operations".

(Can be stated rigorously with more care.)

6 Rectangular splitting

Rectangular splitting for polynomials

[Paterson & Stockmeyer 1973]

Goal: evaluate $p(\xi) = a_{d-1} \xi^{d-1} + \dots + a_0$ with "small" a_i at a "large" (p-bit) $\xi \in \mathbb{R}$

Rectangular splitting for polynomials

[Paterson & Stockmeyer 1973]

Goal: evaluate $p(\xi) = a_{d-1} \xi^{d-1} + \dots + a_0$ with "small" a_i at a "large" (p-bit) $\xi \in \mathbb{R}$

Algorithm.

1. (Baby steps) Compute $\xi^2, \ldots, \xi^{\ell}$

 $O(\ell)$ costly ops

2. Evalute the inner polynomials

 $O(\ell m)$ cheap ops

3. (Giant steps) Compute $\xi^{2\ell}, \dots, \xi^{(m-1)\ell}$

O(m) costly ops

4. Evaluate the outer polynomial

O(m) costly ops

Same idea for evaluating $p \in \mathbb{K}[x]$ on a polynomial / matrix / ...

Rectangular splitting for hypergeometric series

$$\begin{split} f(x) &= a_0 + a_0 \, a_1 \, x + a_0 \, a_1 \, a_2 \, x^2 + \cdots \qquad a_n = p(n) / \, q(n) \\ &\qquad \qquad a_0 \, (1 + a_1 \quad (x + a_2 \quad (x^2 + \cdots + a_{\; \ell-1} \, x^{\ell-1}))) \quad x^0 \\ &\qquad \qquad + \qquad a_0 \cdots a_{\ell-1} \, \left(\quad a_\ell \, (1 + a_{\ell+1} \, (x + a_{\ell+2} \, (x^2 + \cdots + a_{2\ell-1} \, x^{\ell-1}))) \quad x^\ell \\ &\qquad \qquad + \qquad a_\ell \cdots a_{2\ell-1} \, \left(\qquad \qquad \cdots \\ &\qquad \qquad + \qquad a_{(m-1)\ell} \cdots a_{m\ell-1} \, \left(\quad a_{(m-1)\ell} \, (1 + \cdots (\cdots (\quad \cdots \quad + a_{m\ell-1} \, x^{\ell-1}))) \quad x^{(m-1)\ell} \right) \cdots \right) \right) \end{split}$$