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1Another M2 internship
� Long-term goal: Automatic implementation of special functions

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !compiler

(
prf

(r)+ � � �+p0 f=0
f(0); : : : ; f(r¡1)

[a; b]�R
"> 0

double fun(double x);

8x2 [a; b]\ double;��������fun(x)¡ f(x)
f(x)

��������6 "

� This project: Bessel functions

� Floating-point arithmetic + symbolic computation + programming

� Talk to me if interested



Exercises from last week



3Exercise 1

Let T(n) be the complexity of multiplication of n�n lower triangular matrices with
entries in K. Show that one can multiply arbitrary n�n matrices inMn(K) using
O(T(n)) arithmetic operations in K.

Solution.

For n=3 k:

� n�n matrices can be multiplied using O(1) multiplications of blocks of size k�k

� k�k matrices can be multiplied in T(n) ops using the formula0@ �� �
� A �

1A0@ �
B �
� � �

1A=
0@ �
� �

AB � �

1A:
General case (n> 12): embed the n�n matrix product in a product of matrices of
size 4 dn/4e, reducing to 43 products in size dn/4e6n/3.



4Exercise 2

Let � be a feasible exponent for matrix multiplication in Kn�n,
and P2K[x] with degP<n.

a) Find an algorithm for the simultaneous evaluation of P at d n
p
e elements ofKusing

O(n�/2) operations in K.

b) If Q is another polynomial in K[x] of degree <n, show how to compute the �rst n
coe�cients of P �Q :=P(Q(x)) using O(n(�+1)/2) operations in K.

Hint: Write P(x) as
P

iPi(x) (x
d)i where d is well chosen and the Pi have degree <d.



5Exercise 2 � Solution

a) Set d= d n
p
e and P(x) = P0(x)+P1(x) � xd+ � � �+Pd¡1(x) xd(d¡1)

= p0+p1 x+ � � �+pd2¡1 x
d2¡1 (with pk=0 for k>n).

Then0BBBBBB@
p0 � � � pd¡1
pd p2d¡2
���

p(d¡1)d � � � pd2¡1

1CCCCCCA
0BBBBBB@

1 � � � 1
a0 ad¡1
��� ���

a0
d¡1 � � � ad¡1

d¡1

1CCCCCCA=
0BBBBBB@

P0(a0) � � � P0(ad¡1)
P1(a0) P1(ad¡1)
��� ���

Pd¡1(a0) � � � Pd¡1(ad¡1)

1CCCCCCA:
Algorithm:

� Compute the aj
i and aj

di for 06 i; j <d O(d2) ops

� Perform the matrix product O(d�) ops

� Recover P(aj) from the Pi(aj) for 06 j <d O(d2) ops

Total O(d�)=O(n�/2), vs. O(n3/2) naively.

(Next lecture: O(M(n)) for n evaluation points.)



6Exercice 2 � Wait: why?

Let � be a feasible exponent for matrix mult. in Kn�n, and P2K[x] with degP<n.

b) If Q is another polynomial in K[x] of degree <n, show how to compute the �rst n
coe�cients of P �Q :=P(Q(x)) using O(n(�+1)/2) operations in K.

Preliminary questions:

� How fast can we compute P �Q in full (semi-naively)? O(nM(n2))

� Is there any hope of doing better? size=
(n2)

� Why are we interested in the �rst n coe�cients?

e.g., f(x)=a0+a1 x+ � � �+O(xn)
g(x)=b1 x+b2 x

2+ � � �+O(xn)

)
=) f(g(x))= c0+ c1 x+ � � �+O(xn)

� How fast can we compute them (semi-naively)? O(n �M(n))



7Exercise 2 � Solution
b) Write P=P0+P1 x

d+ � � �+Pd¡1 x
d¡1 as before, so that

P �Q = P0 �Q + (P1 �Q) �Qd+ � � �+ (Pd¡1 �Q) �Qd(d¡1)

= (p0+p1 Q+ � � �+p d¡1Q
d¡1)

+ (pd+pd+1Q+ � � �+p2d¡1Q
d¡1) Qd

+ � � �
+ (p(d¡1)d+p�Q+ � � �+pd2¡1Q

d¡1) Qd(d¡1):

� First n coe�cients in all cofactors of Qd�i simultaneously:

0BB@ P0�Q
���

Pd¡1�Q

1CCAmodx n =

0BB@ p0 � � � pd¡1
��� ���

p(d¡1)d � � � pd2¡1

1CCA
0BBBBBBBB@

1 0 � � � 0
[Q]0 [Q]1 [Q] n¡1
��� ��� ���

[Qd¡1]0 [Qd¡1]1 � � � [Qd¡1] n¡1

1CCCCCCCCA
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

d�d by d� n , cost O
¡ n
d
d�
�
=O(n(�+1)/2)

0BBBBBBBB@
1
x

���
x n¡1

1CCCCCCCCA:

� Powers of Q and Qdmod xn, �nal recombination: O(dM(n))=O(n3/2) ops.



8Teaser: Fast composition (Lecture 6)
ar

X
iv

:2
40

4.
05

17
7v

2 
 [

cs
.S

C
] 

 2
2 

Se
p 

20
24

Power Series Composition in Near-Linear Time

Yasunori Kinoshita ∗ Baitian Li †

Abstract

We present an algebraic algorithm that computes the composition of two power
series in softly linear time complexity. The previous best algorithms are O(n1+o(1))
non-algebraic algorithm by Kedlaya and Umans (FOCS 2008) and an O(n1.43) algebraic
algorithm by Neiger, Salvy, Schost and Villard (JACM 2023).

Our algorithm builds upon the recent Graeffe iteration approach to manipulate
rational power series introduced by Bostan and Mori (SOSA 2021).

1 Introduction

Let A be a commutative ring and let f(x), g(x) be polynomials in A[x] of degrees less than
m and n, respectively. The problem of power series composition is to compute the coeffi-
cients of f(g(x)) mod xn. The terminology stems from the idea that g(x) can be seen as a
truncated formal power series. This is a fundamental problem in computer algebra [Knu98,



0 Rational Series
C-Finite Sequences



10Formal power series

De�nition. The ring of formal power series in the variable x over the ring A is the set
of formal objects of the form X

n=0

1
anxn

equipped with the operations + and � implied by the notation.

Notation: f(x)=g(x)+O(x�) when the terms of order <� of f; g coincide.

Variants.

� Formal Laurent series A((x)) �
X
n=N0

1

anxn for some N02Z

Note: A((x)) is a �eld when A is a �eld. Also note the di�erence with Laurent series in complex analysis.

� Formal Puiseux series A((x1/�)) �
X
n=N0

1

anxn/d for some d2Nnf0g and N02Z

Note: A((x1/�)) is an (algebraically closed) �eld if A is an (algebraically closed) �eld.



11Rational series, recurrences with constant coefficients

De�nition. A formal power (or Laurent) series over a �eld K is called rational when
it is the series expansion at 0 of an element of K(x).

Example. 1
1+ x¡ x2

=1+ x+2 x2+3 x3+5 x4+ � � �

De�nition. A sequence (un)2KN is called C-�nite when it sati�es a linear recurrence

8n2N; 1 un+s+ cs¡1un+s¡1+ � � �+ c0un=0 with ci2K.

(Equivalently: for n> some N.) s=order of the recurrence

Example. Fn+2= Fn+1+ Fn

Theorem. A power series is rational if and only if its coe�cient sequence is C-�nite.



12By any other name.. .

Linear Feedback Shift Registers (LFSR) In�nite Impulse Response (IIR) �lters

Circuits, cryptography... Signal processing, control

Matt Crypto, Wikimedia Commons, public domain
Przemekbary, Wikimedia Commons, cc-by-4.0-intl

un+16=un+5+un+3+un+2+un (over F2) yn= 0.5 yn¡1+ xn (over R)
inhomogeneous



13The characteristic polynomial of a recurrence

un+s+cs¡1un+s¡1+ � � �+c0un=0 (Rec)

De�nition. The characteristic polynomial of the recurrence (Rec) is the polynomial

�(X)=Xs+ cs¡1X
s¡1+ � � �+ c0 :

� Generating series:
X
n=0

1

unxn= p(x)
1+ cs¡1X+ � � �+ c0Xs for some p2K[x]

(1+ cs¡1X+ � � �+ c0X
s is called the reciprocal polynomial of �.)

� Closed form solution: un=
X

�(�)=0

p�(n)�n where p�2K[n]<mult(�;�).



14Algorithms

Proposition.

1. One can compute the �rst N terms of a rational series in O(N) operations.

2. One can compute the nth term of a rational series in O(logn) operations.

Proof. Compute the associated recurrence and the �rst s terms by any means. Then

1. Set us := ¡(cs¡1us¡1+ � � �+ c0u0), then us+1 :=¡(cs¡1us + � � �+ c0u1), etc.

2. Write the recurrence in matrix form:0BBBBBB@
un+1

un+2

���
un+s

1CCCCCCA=
0BBBBBB@

1

�� �
1

¡c0 ¡c1 � � � ¡cs¡1

1CCCCCCA
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

A

0BBBBBB@
un

un+1

���
un+s¡1

1CCCCCCA

Compute An¡s by binary powering. Apply it to (u0; : : : ; us¡1)T. �

Faster algorithms for large s in Lecture 6.



15An exercise for next time
Let f(x)= (1+ x+ x2)n2Z[x].
Give an algorithm that computes the parity of all coe�cients of f
in O(M(n)) bit operations.



1 Differentially Finite Series
P-Finite Sequences



17Definition
K � e�ective �eld of characteristic zero

De�nition. A power series f2K[[x]] is di�erentially �nite when the vector space

spanK(x)(f; f0; f00; : : : )�K((x))

generated by its iterated derivatives has �nite dimension over K(x).

In other words: f satis�es a linear homogeneous di�erential equation

ar(x) f(r)(x)+ � � �+a1(x) f0(x)+a0(x) f(x)= 0 (ar=/ 0)

with coe�cients in K[x].

Di�erentially �nite series are also called D-�nite or holonomic.



Implementations

� Maple: gfun, Mgfun

� Mathematica: HolonomicFunctions,
Guess, . . .

� SageMath: ore_algebra



19Remark: Series vs. functions

De�nition. For U�C, a meromorphic function f:U!C is called di�erentially �nite
when the vector space

spanC(x)(f; f0; f00; : : : )

generated by its iterated derivatives has �nite dimension over C(x).

Theorem (�Cauchy's theorem�). Suppose ar(0)=/ 0 in the equation

ar(x) f(r)(x)+ � � �+a1(x) f0(x)+a0(x) f(x)= 0; a0; : : : ; ar2C[x]: (Di�Eq)

Then there exists a neighborhood U�C of 0 such that, for any (v0; : : : ; vr¡1)2Cr¡1,
(Di�Eq) has a unique analytic solution with f(i)(0)= vi for i=0; : : : ; r¡ 1.

Proposition. A function that is analytic at 0 is D-�nite if and only if its series expansion
is D-�nite.



20Which of these series (functions) are D-finite?

� f(x)= exp(x)= 1+ x+2 x2+6 x3+ � � � f0¡ f=0 ✔

� f(x)= x2+5 x3+ x12 f(13)=0 ✔

� f(x)= 1+ x
p

=1+ 1

2
x¡ 1

8
x2+ 1

16 x4+ � � � f0(x)
f(x)

= 1
2 (1+ x)

✔

� f(x)= tan(x)= 1+ 1

3
x3+ � � � poles ✘

� f(x)= arctan(x)= 1¡ 1

3
x3+ � � � (1+ x2) f0(x)= 1 ✔

� f(x)=
X
k=0

1

k! xk x2 f00(x)+ (3 x¡ 1) f0(x)+ f(x)= 0 . . . but see next slides ✔

� f(x)=
X
k=0

1

2k! xk next slides ✘

� f(x)= sin(x)+ exp(x)2

x7+15p =1+3 x+2 x2+ 7

6
x3+ � � � later ✔



21P-finite sequences

De�nition. A sequence (un)n2N is called P-�nite (or P-recursive, or holonomic) if it
satis�es a linear homogeneous recurrence relation

bs(n)un+s+ � � �+b1(n)un+1+b0(n)un=0; bs=/ 0; (Rec)

with coe�cients in K[n].

Equivalently: when (Rec) holds for su�ciently large n2N.

Also, informally: when its shifts (un)n2N; (un+1)n2N; (un+2)n2N; : : :generate a �nite-dimensional vector
space over K(n). (But some care is needed to make sense of this de�nition!)

Examples. n! (n+1)!= (n+1)n!
Cn=

1

n+1

�
2n
n

�
(n+2)Cn+1=(4n+2)Cn

Fn=
1

5
p ('n¡'~n), ';'~ = 1� 5

p

2
Fn+2= Fn+ Fn+1



22Differential equations and recurrences

Theorem. A power series is D-�nite if and only if its coe�cient sequence is P-�nite.

()). Suppose
X
i=0

r

ai(x) f(i)(x)= 0. Substitute ai(x)=
X
i=0

d

ai;jx
j and f(x)=

X
n=0

1

fnxn:

X
i=0

r �X
j=0

d

ai;jx
j

��X
n=0

1
fnn (n¡ 1) � � � (n¡ i) xn¡i

�
=0;

X
n=0

1 X
i=0

r X
j=0

d

n (n¡ 1) � � � (n¡ i)ai;jfnxn¡i+j=0;

X
i=0

r X
j=0

d X
n0=¡i+j

1
(n0+ i¡ j) (n0+ i¡ j¡ 1) � � � (n0¡ j)ai;jfn0+i¡jx

n0 =0;

X
n0= 0

1  X
i=0

r X
j=0

d

(n0+ i¡ j) (n0+ i¡ j¡ 1) � � � (n0¡ j)ai;jfn0+i¡j

!
xn

0
=0: �



((). Suppose
X
i=0

s

bi(n)un+i=0 for all n2N. Extend (un) by setting un=0 for n< 0.

� By multiplying the relation with n (n+1) � � � (n+ s¡ 1), we can assume wlog

8n2Z;
X
i=0

s

bi(n)un+i=0 (RecZ)

� For any double-sided formal series f(x)=
X
n2Z

1

fnxn, one has

x¡1 f(x)=
X
n2Z

fn+1 x
n; x f0(x)=

X
n2Z

n fnxn:

� Letting
�
[X(f)](x)= x f(x);
[D(f)](x)= f0(x); we get from (RecZ) that

X
i=0

s

bi(X �D) �X¡i(f)= 0 where f(x)=
X
n2Z

unxn: �



24Differential equations and recurrences: remarks

Theorem. A power series is D-�nite if and only if its coe�cient sequence is P-�nite.

� The proof gives a conversion algorithm.

� Di�erential equation of
��������order 6 r
degree 6d

7! recurrence of
��������order 6d+ r
degree 6 r:

� Also holds for
�

double-sided series
P

n2Zunzn

sequences (un)n2Z:

Corollary. One can compute the �rst N terms of a D-�nite series in O(N) ops.

Lecture 14: nth term � but not in O(logn)!



25Equality tests

Proposition. Assume that (un)2KN and (vn)2Kn both satisfy

bs(n)yn+s+ � � �+b1(n)yn+1+b0(n)yn=0 (bs=/ 0)

and un= vn for n6 `+ s where `=max (0; largest integer root of bs). Then u= v.

Corollary. If f; g2K[[x]] satisfy the same di�erential equation

ar(x)y(r)(x)+ � � �+a1(x)y0(x)+a0(x)y(x)= 0 (ai2K[x])

one can test if f= g.

f(Rec); u0; : : : ; u`+sg=�nite data structure for representing (un)

f(DiffEq); f(0); f0(0); : : : ; f(`+s)(0)g=�nite data structure for representing f



26Inequalities
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POSITIVITY CERTIFICATES FOR LINEAR RECURRENCES

ALAA IBRAHIM AND BRUNO SALVY

Abstract. We show that for solutions of linear recurrences with polynomial
coefficients of Poincaré type and with a unique simple dominant eigenvalue,
positivity reduces to deciding the genericity of initial conditions in a precisely
defined way. We give an algorithm that produces a certificate of positivity
that is a data-structure for a proof by induction. This induction works by
showing that an explicitly computed cone is contracted by the iteration of the
recurrence.

1. Introduction

A sequence (un)n∈N of real numbers is called P-finite if it satisfies a linear re-
currence

(1) pd(n)un+d = pd−1(n)un+d−1 + · · ·+ p0(n)un, n ∈ N,

with coefficients pi ∈ R[n] (1). When the coefficients pi are constants in R, the



2 D-finite closure properties



28Common equations, closure by sum

Proposition. If f; g2K[[x]] are D-�nite, one can �nd a di�erential equation

ar(x)y(r)(x)+ � � �+a1(x)y0(x)+a0(x)y(x)= 0 (ai2K[x])

satis�ed by both f and g.

Corollary 1. One can test the equality of D-�nite sequences.

Corollary 2. If f; g2K[[x]] are D-�nite, then f+g is D-�nite.

Similarly,

� One can �nd a common recurrence satis�ed by two given P-�nite sequences,

� The sum of two P-�nite sequences is P-�nite.



29Closure by sum: direct proof

Corollary. If f; g2K[[x]] are D-�nite, then f+g is D-�nite.

Proof. Write V'= spanK(x)('(i))i2N.

Since (f+g)0= f0+g0, one has

Vf+g�Vf+Vg;

hence

dim(Vf+g)6dim(Vf)+dim(Vg)<1: �

Showing that something is D-�nite / P-�nite / (other analogous properties.. .)

, Imprisoning its derivatives / shifts / (. . .) in �nite dimension



30Closure by sum: algorithm

Suppose

(
ar(x) f(r)(x)+ � � �+a1(x) f0(x)+a0(x) f(x)= 0;
bs(x)g(s)(x)+ � � �+b1(x)g0(x)+b0(x)g(x)= 0:

We are looking for an equation ct(x)y(t)(x)+ ���+ c0(x)y(x)= 0 satis�ed by both f and g.

Using the equations, we can rewrite any pair (f(i); g(i)) on a �nite basis (f; 0); (f0; 0); : : : ;
(0; g); (0; g0); : : : . Doing so, we set up a linear system:

(f;g) ::: (f(t);g(t))

(f;0)

���
(f(r¡1);0)

(0;g)

(0;g(s¡1))

0BBBBBBBBBB@
1 � � �
1 � � �

1 � � �
1 � � � �
1 � � � �

1CCCCCCCCCCA

0BBBBBBBBBB@
c0

���

ct

1CCCCCCCCCCA=0

As soon as t+1>r+ s, this system has a nonzero solution (c0; : : : ; ct)2K(x)t+1.

Remark. f+g satis�es a di�erential equation of order 6 r+ s



31Closure by product

Proposition.

� If f; g2K[[x]] are D-�nite, then f g is D-�nite.

� If u; v2KN are P-recursive, then uv is P-�nite.

Corollary: If f; g2K[[x]] are D-�nite, their Hadamard product f�g=
X
n=0

1

fngnxn too.

Proof. Again by linear algebra: if

(
Vf is generated by f; : : : ; f(r¡1);

Vg is generated by g; : : : ; g(s¡1);

then 8k2N; (f g)(k)2 spanK(x)

¡
f(i)g(j)

�
06i6r¡1
06j6s¡1

. �

Remark. f g satis�es a di�erential equation of order 6 r s.

Exercise. Give a better order bound in the case of f2. (Answer: r (r+1)/2.)



32Algebraic series

De�nition. A series f2K[[x]] is called algebraic if there exists P2K[x; y]nf0g such that

P(x; f(x))= 0:

Examples.

� rational series, 1+ x3p

� generating series of non-ambiguous context-free languages are algebraic

Theorem. Algebraic series are D-�nite. [Abel 1827, Cockle 1860, Harley 1862]

More generally:
If f2K[[x]] is D-�nite and g2 xK[x] is algebraic, then f �g is D-�nite. (similar proof)



33Algebraic series are D-finite: proof

Wlog, suppose P(x; f(x))= 0 with P2K(x)[y] irreducible of degree d.

We have @

@x

�
P
¡
x; f(x)

��
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=0

= Px
¡
x; f(x)

�
+Py

¡
x; f(x)

�|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=/0

f0(x):

Hence f0(x) = ¡
Px
¡
x; f(x)

�
Py
¡
x; f(x)

�
= ¡Q

¡
x; f(x)

�
Px
¡
x; f(x)

�
where Q= 1

Py
modP

= R
¡
x; f(x)

�
R2K(x)[y]:

Then f00(x) = Rx

¡
x; f(x)

�
+Ry

¡
x; f(x)

�
f0(x)

= poly
¡
x; f(x)

�
; and so on by induction.

Since P
¡
x; y(x)

�
=0 any poly

¡
x; f(x)

�
belongs to spanK(x)f1; f; f2; : : : ; fd¡1g.

So dimK(x)(f; f0; f00; : : : )6d.



34Hypergeometric sequences and series

De�nition.

� A sequence (un)n2N is hypergeometric if it satis�es a �rst-order recurrence relation
with polynomial coe�cients.

In other words: if un+1

un
2K(n) [coincides with a rat. function for large enough n].

� A generalized hypergeometric series is a power series whose coe�cient sequence
is hypergeometric. Notation:

Fp q

�
a1; : : : ; ap

b1; : : : ; bq

��������x�=X
n=0

1

unxn where un+1=
Q

i(n+ai)
(n+1)

Q
j(n+bj)

un; u0=1:

� (1¡ x)a= F1 0(¡a;; x), ln(1+ x)= x F2 1(1; 1; 2;¡x), Li2(x)= x F3 2(1; 1; 1; 2; 2; x), etc.

� Many identities, e.g., F2 1(2a; 2b;a+b+1

2
; x)= F2 1(a; b;a+b+1

2
; 4 x (1¡x)) (Kummer)



35Classes of power series

rational

hypergeom.

D-�nitealgebraic



36Summary

Theorem.

� D-�nite series form an e�ective subring of (K[[x]];+;�).

� P-�nite sequences form an e�ective subring of (KN;+;�).

This means that we can prove identities involving

� series like exp(x), ln(1+ x), 1+ x
p

, Fp q

�
a1; : : : ; ap

b1; : : : ; bq

��������x� (and many more),

� sequences like Fibonacci's, Catalan's (and many more)

by computing in these rings.



3 Proof of identities



38Automatic proof of identities

Problem. Prove that sin(x)2+ cos(x)2=1.

Solution 1. Write s(x)= sin(x). We have s00+ s=0.

z = s2

z0 = 2 s s0 ✘
z00 =

�
2 s s0

�0=2 (s0)2+2 s s00=2 (s0)2 ¡ 2 s2 ✘
z000 =

�
2 (s0)2¡ 2 s2

�0=4 s0 s00¡ 4 s s0=¡8 s s0 z000+4 z0=0

Same for s(x)= cos(x). Hence y(x)= sin(x)2+ cos(x)2 satis�es y000+4y0=0.

Now f(x)= 1 satis�es the same equation.

The initial conditions y(0)= 1; y0(0)= 0; y00(0)= 0 agree.

Since the leading coe�cient does not vanish, this implies y= f.



39Lazy proof of identities
Solution 2. Without even computing the equations, we know that

� any (s2)(k) belongs to span Q fs2; s s0; (s0)2g,

so sin(x)2 must satisfy an ODE of order 6 3; with constant coe�cients ,

� cos(x)2 must satisfy the same equation,

� sin(x)2+ cos(x)2¡ 1 must satisfy an ODE of order 6 4.
Since this equation has constant coe�cients, in particular, it is nonsingular.

So it is enough to check that sin(x)2+ cos(x)2¡ 1=O(x4).



40Remark: Minimal annihilators
We found an equation of non-minimal order!

De�nition. The minimal annihilator of a D-�nite function f is the equation

f(r)(x)+ � � �+a1(x) f0(x)+a0(x) f(x)= 0; ai2K(x)

of minimal order with leading coe�cient =1.

MATHEMATICS OF COMPUTATION

Volume 93, Number 347, May 2024, Pages 1427–1472

https://doi.org/10.1090/mcom/3912

Article electronically published on October 23, 2023

MINIMIZATION OF DIFFERENTIAL EQUATIONS AND

ALGEBRAIC VALUES OF E-FUNCTIONS

ALIN BOSTAN, TANGUY RIVOAL, AND BRUNO SALVY

Abstract. A power series being given as the solution of a linear differential

equation with appropriate initial conditions, minimization consists in finding

a non-trivial linear differential equation of minimal order having this power

series as a solution. This problem exists in both homogeneous and inhomo-

geneous variants; it is distinct from, but related to, the classical problem of

factorization of differential operators. Recently, minimization has found ap-



41Proof of identities: another example

Fn+2= Fn+ Fn+1; F0=0; F1=1; un= Fn+2 Fn¡ Fn+1
2

Any homog. poly. of degree 2 in Fn; Fn+1; : : : belongs to spanQ(Fn2 ; FnFn+1; Fn+1
2 ).

We know that the sequences (un); : : : ; (un+3) must satisfy a linear relation over Q.

un = Fn+2 Fn ¡ Fn+1
2

= Fn
2 + FnFn+1¡ Fn+1

2

un+1 = Fn+1
2 + Fn+1 Fn+2 ¡ Fn+2

2

= Fn+1
2 + Fn+1 (Fn+ Fn+1)¡ (Fn+ Fn+1)2

= ¡Fn2 ¡ FnFn+1+ Fn+1
2

It turns out that un+1=¡un.

Since u0= F0
2+ F0 F1¡ F1

2=¡1, we conclude that un=(¡1)n+1 for all n.



42An exercise for next week
Prove the following identity of formal power series:

arcsin(x)2=
X
k=0

1
k!

1

2

3

2
� � �
¡
k+ 1

2

� x2k+2

2k+2
:

For this:

1. Check that y(x)= arcsin(x) is solution to (1¡ x2)y00(x)= xy0(x).

2. Deduce a linear di�erential equation sati�ed by z(x)=y(x)2.

3. Deduce a linear recurrence relation satis�ed by the coe�cients of the series.

4. Conclude.



4 Guessing



44A riddle
What is the next term in this sequence?

1; 1; 2; 4; 9; 21; 51; 127; 323; 835; 2188; 5798; 15511; 41835; 113634; 310572; 853467; : : :

Is it generated by a �small� di�erential equation / recurrence?

sage: from ore_algebra import OreAlgebra, guess
sage: guess([1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798,
....: 15511, 41835, 113634, 310572, 853467],
....: OreAlgebra(PolynomialRing(ZZ, 'n'), 'Sn'))
(-n - 4)*Sn^2 + (2*n + 5)*Sn + 3*n + 3

: : : ; 2356779; 6536382; 18199284; 50852019; 142547559; 400763223; 1129760415; : : :

(Motzkin numbers)



45Guessing linear equations: principle

1; 1; 2; 4; 9; 21; 51; 127; 323; 835; 2188; 5798; 15511; 41835; 113634; 310572; 853467; : : :

Ansatz:

(b2;1n+b2;0)un+2+(b1;1n+b1;0)un+1+(b0;1n+b0;0)un=0

Solution by linear algebra:

n=0
n=1
n=2
n=3
n=4
n=5

0BBBBBBBBBBBBBB@

1 0 1 0 2 0
1 1 2 2 4 4
2 4 4 8 9 18
� � � � � �
� � � � � �
� � � � � �

1CCCCCCCCCCCCCCA

0BBBBBBBBBBBBBB@

b0;0
b0;1
b1;0
b1;1
b2;0
b2;1

1CCCCCCCCCCCCCCA=0

� #equations> #variables) generically no solution

� Repeat for various (order; degree) compatible with available #terms

� Naïve complexity: (#terms)�



46Hermite-Padé approximation

Hermite-Padé approximation problem.

Given k power series f1; : : : ; fk2K[[x]],
k degree bounds d1; : : : ; dk,
an approximation order �,

�nd polynomials p1; : : : ; pk2K[x] such that degpi<di and

p1(x) f1(x)+ � � �+pk(x) fk(x)=O(x�):

When � is chosen �just right� (�=d1+ � � �+dk¡ 1), the tuple (p1; : : : ; pk) is called a
Hermite-Padé approximant of type (d1¡ 1; : : : ; dk¡ 1) of f.

Naïve algorithm: O(��) ops Fast algorithm: O(k�M(�) log�), lecture 9
[Beckermann-Labahn 1994]



47Guessing using Hermite-Padé approximation
� To guess a di�erential equation for the generating series

P
ifix

i,
compute Hermite-Padé approximants (a0; : : : ; ar) of (f; f0; : : : ; f(r)) for various (r; d)

� To guess an algebraic equation for
P

ifix
i,

compute Hermite-Padé approximants of (1; f; f2; : : : ; fk)

� To guess a recurrence for (fi)i , proceed as above and convert

� Extensively used in enumerative combinatorics (Lecture 16)

Remark. Order and degree bounds make guessing into a rigorous algorithm.

For instance, given a bound on its degree, one can compute the minimal annihilator of
a D-�nite series using Hermite-Padé approximation.



5 Bonus



49Differential operators as skew polynomials
Algebraic framework for working with di�erential operators f 7! (x 7!

P
iai(x) f(i)(x))

De�nition.

K(x)hDi=
(X

i=0

r

ai(x)Di

���������� r2N;
ai2K(x)

)

with the usual addition of polynomials,
multiplication de�ned by D � x= x �D+1 and linearity.

Alt.: A/(AhDx¡ 1iA)where A= ring of noncommutative polynomials in Dover K(x).

Exercise.

� Compute D (xD¡ 1)
� Interpret in terms of the solutions of y0=0 and xy0=y



50Skew Euclidean structure
� Euclidean right division:

L=QP+R with order(R)< order(P)

� Greatest common right divisor:�
L1=Q1G

L2=Q2G
with G of max order

� Least common left multiple: ($ closure by sum!)

U1L1=U2L2=M of min order

� Non-commutative Euclidean algorithm

� Annihilating (left) ideal:

Ann(f)= fLj L(f)= 0g
=GK(x)hDi where G=minimal annihilator of f



51Recurrence operators as skew polynomials

De�nition.

K(n)hSi=

(X
i=0

s

bi(n) Si
���������� s2N;

bi2K(n)

)

with the usual addition of polynomials,
multiplication de�ned by S �n=(n+1) �S and linearity.

� Also a skew Euclidean ring

� Di�. eq.$ rec. correspondance:

K[x; x¡1]hDi =� K[n]hS; S¡1i by
�

x 7!S¡1

D 7! (n+1) S:



52Several variables
� The idea of D-/P-�niteness generalizes to functions of several variables:�

n

k

�
2
�
n+k

k

�
2
; e¡x

2
sin(�x); : : :

� Diff. equations/ recurrences are replacedbysuitable systems (finitelymany ini. cond.):

un;k=
�
n

k

�
 !

�
(n+1¡k)un+1;k=(n+1)un;k

(k+1)un;k+1=(n¡k)un;k

� Equations can mix derivatives and shifts (and other kinds of operator):(
x Jn
0 (x)+ x Jn+1(x)¡n Jn(x)= 0

x Jn+2(x)¡ 2 (n+1) Jn+1(x)+ x Jn(x)= 0
(Bessel functions)

� The closure properties extend () proofs of identities)

(algorithms based on noncommutative Gröbner bases)



53Creative telescoping
New closure property: by de�nite summation / integration (under assumptions)

un;k=
�
n

k

�
 !

�
(n+1¡k)un+1;k¡ (n+1)un;k=0
(k+1)un;k+1¡ (n¡k)un;k=0

 
¡�k

vn=
X
k

un;k  ! vn+1¡ 2 vn=0

Leads to automatic proofs of many more identities:

X
k=0

n �X
j=0

k �
n

k

��
=
�
n

2
+1
�
23n¡ 3n 2n¡2

�2n
n

�
Z
0

+1
x e¡px

2
Jn(bx) In(c x)dx= 1

2p
exp
�

c2¡b2

4p

�
Jn

�
b c

p

�
: : :

[Zeilberger 1990, Chyzak 2000, .. .]
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