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Overview of the gfun[NumGfun] Package

Calling Sequence
gfun[NumGfun][command](ar guments)

command(ar guments)

Description

The NumGfun package provides tools to perform “analytic” and numerical computations with power series giv-
en by linear differential equations with polynomial coefficients, analytic functions defined by convergent series
of the same kind, and sequences given by recurrence relations with polynomial coefficients.

Its main features include the ability to compute:

» numerical values of analytic solutions of ODEs with polynomial coefficients, and transition matrices between
ordinary or regular singular points of such equations, with guaranteed accuracy (that is, using rigorous error
bounds),

« various kinds of symbolic bounds on the general terms/coefficients of solutions.

NumGfun is a subpackage of gfun.

List of NumGfun Package Commands

* Numerical evaluation and analytic continuation:
anal ytic_continuation diffeqtoprocevaldiffeqtransition_matrix

» Symbolic bounds:
bound_di ffeq bound diffeq_tail bound _ratpolybound recbound rec_tail

 Utilities:
dom nant _root fnth_termlocal basisplot_path
Informational Messages and Settings

» Theverbosity level of NumGfun commands is determined by the value of infolevel[gfun]. Levels 1 to 5 cor-
respond to informational messages. Levels 6 and higher additionally turn on debugging information.

* The Settings submodule provides a number of tuning parameters that influence the behaviour of NumGfun.
Asmost of them require a detailed understanding of the algorithms and their implementation, the settings are
only documented in the package's source code. Y et, error messages sometimes suggest changing a particu-
lar setting when a computation fails. This can be done by assigning a value to amember of Settings, asin:
NumGfun:-Settings:-default_eval_precision := 100.

Examples

> with(gfun): w th(NunGun):
fnth_term {(3*n+3)*u(n+1) =(3*n+5)*u(n), u(0)=1}, u(n), 2000, 50);

175.89036294166519099188900014849043485353660447070009 (11)

> deq := holexprtodiffeq(arctan(z), y(z));
eval di ffeq(deq, y(z), 1/2, 50);

deq:= |(22 + 1) [c?z y(z)) —1,y(0) :0}

0.46364760900080611621425623146121440202853705428612 (12

> deq = (zh"2+1)*diff(y(z),z,z) + (3*z+1)*diff(y(z),z) + z"2*y(z);



2 « Overview of the gfun[NumGfun] Package

anal ytic_continuation(deq, y(z), [0, 1+, 2], 50);

2
degi= (A +1) |- L (32+1)(dy(z))+y(z)z‘2
dZZ dz
Ul72678326528197350565935299733280205125629707790244)_Cb
+—Ul43578845882065137070719121052451044561729148136090)_C} (13)
> deq := {(z"2-1)*diff(y(z),z,2)+(z"3+3)*y(z), y(0)=1, D(y)(0)=0};
anal ytic_continuation(deq, y(z), [0, 1], 10, 'ord' =3);
. 2 d2 3
deq:=1{(z° —1) 2P + (22 +3) ¥(2), ¥(0) = 1,D()(0) = 0
Z
(4.7335543398) [1 2(z-1)n(z—1) + [ 4 2m(z )] (z— 1)2)  ( ”
-8.3339545763 + 29.74179907871) (z—1 — (z — 1)?)
> deq : = op(sel ect(has, deq, z));
transition_matrix(deq, y(z), [0, 1], 10);
2
deq—(z—l)[d ]+(23+3)y(z)
a2
4.7335543398 2.4577355851 15
-8.3339545763 + 29.74179907871 -4.1158620623 + 15.44240811731 '
> bound_ratpol y((z"7+3*z"2+z+1)/ ((z-2)"3*(z"3-3)*(z-1)"2), z);
1794743353 137935633 2 2309624043 3
5 + VA VA (1.6)
25000000000 (1 — z) 5000000000 50000000000
> deq : = holexprtodiffeq(arctan(z), y(z));
bound_di ffeq(deq, y(z));
deqi={(7 +1) (& M) | = 1,10) =0}
dz
L 7
2(1-2)° '

Licence and Contact Information

* NumGfunis part of Algolib (http://algo.inriafr/libraries/) available under the GNU Lesser General Public Li-
cence, version 2.1 or, at your option, any later version. See the file COPY ING for details.

» The source code for NumGfun can be downloaded from http://marc.mezzarobba.net#code-NumGfun.
» Please send your comments and bug reports to <marc@mezzarobba.net>.

References

The primary reference to use when citing NumGfun is:

* Marc Mezzarobba. NumGfun: a Package for Numerical and Analytic Computation with D-finite Functions.
In Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation (ISSAC 2010),
pages 139-145. ACM, 2010. (ar Xi v: 1002. 3077, doi : 10. 1145/ 1837934. 1837965).
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A more detailed and up-to-date description as well as an in-depth discussion of many of the underlying algo-
rithms appear in:

« Marc Mezzarobba. Autour de I'évaluation numérique des fonctions D-finies. Thése de doctorat, Ecole poly-
technique, 2011. (In French.)

Original references for the algorithms implemented in NumGfun include the following:

e David V. Chudnovsky & Gregory V. Chudnovsky. Approximations and complex multiplication according to
Ramanujan. Ramanujan revisited, Academic Press, 1988, 375-472.

» Marc Mezzarobba & Bruno Salvy. Effective Bounds for P-Recursive Sequences. Journal of Symbolic Com-
putation 45(10):1075-1096, 2010. (doi : 10. 1016/ . j sc. 2010. 06. 024)

* Jorisvan der Hoeven. Fast evaluation of holonomic functions. Theoretical Computer Science, 1999, 210,
199-216.

See Also

ofun, DEtools, UsingPackages, with



NumGfun[bound_diffeq] - majorant series for D-
finite functions; NumGfun[bound_diffeq_tail] - bound
the tails of the power series expansion of a D-finite
function

Calling Sequences

bound_diffeq(eq, y(2))
bound_diffeq_tail(eq, y(2), n)

Parameters

eq - linear differential equation with polynomial coefficients, with initial values at origin
y - name; function name

z - name,; variable of the functiony

n - name; starting index of thetails

Description

e Thebound_diffeq command computes a majorant series for the power series expansion at 0 of aformal
power series specified as the solution of alinear differential equation with polynomial coefficients along with
initial values. A magjorant series of aformal seriesf with complex coefficientsis a series g with nonnega-
tive coefficients such that for al n, the coefficients f[n] and g[n] of z*nin f(z) and g(z) respectively satisfy
abs(f[n]) <= g(n). The majorant seriesisa“tight” bound in the sense that its disk of convergence extends to
the nearest singularity of the differential equation.

» Thebound_diffeg_tail command computes a bound for the tails Sum(y[K]* 2"k, k=n..infinity) of the power
series expansion at O of an analytic function given as the solution of alinear differential equation with poly-
nomia coefficients along with initial values. The output is formulainvolving the starting index n of the sum-
mation range.

+ Differential equations with no initial values are aso allowed on input. In this case, the output is only deter-
mined up to a constant factor, and is such that all formal power series (resp. convergent power series) solu-
tions admit a majorant series (resp. atail bound) of the given form for a suitable choice of constant. The con-
stant depends on the particular choice of solution.

» Some intermediate computations are performed numerically, at a precision determined by the Digits environ-
ment variable. In particular, the value of Digits influences the precision at which some (rational) constants ap-
pearing in the bounds are computed. In rare cases, these functions may fail to produce a finite bound although
one exists, and increasing Digits can help. (It is abug, however, if an incorrect bound is returned.)

Examples
> w t h(gfun:-NunGfun):
> bound_diffeq({diff(y(z),z)=y(z), y(0)=1}, y(2));

(2]

n

> —L— @1
n':'O F(n—l— 1)
> bound_diffeq({(1+z)*diff(y(z),z)=y(z), y(0)=1}, y(z));
1
-z+1 @2



5 « NumGfun[bound diffeq] - majorant series for D-finite functions; NumGfun[bound_diffeq_tail] - bound
the tails of the power series expansion of a D-finite function

> bound_diffeq((1+z)*diff(y(z),z)=y(z), y(2z));

Warni ng, inconplete initial conditions. The returned bound will hold (for a suitable
choice of _C) for all *power series* solutions.
_C
-z+1 @3
> bound_diffeq({diff(y(z),z,z)=z*y(z), y(0)=1, D(y)(0)=1}, y(2));
2,
1 (n+1) (n+2) (n+3) (n+4) (n+5) (n+6) (n+7)3 *> 7" y
5040 n=0 1 2 ( . )
F[— n-+ lj
3
> bound_diffeq_ tail ({diff(y(z),z)=y(z), y(0)=1}, y(z), n);
o n< 2]
1— 1
|z| + 3
n (2.5)
(n+3) (14— ]
1—
n+3 .
otherwise
I'n+1)
> bound_diffeq_ tail ({(1+z)*diff(y(z),z)=y(z), y(0)=1}, y(z), n);
n
4" 26)
lz| —1
> bound_diffeq_tail (diff(y(z),z)=y(z), y(z), n);
Warning, inconplete initial conditions. The returned bound will hold (for a suitable
choice of _C) for all *power series* solutions.
_Cé? n< |Z|1
1 —
|z + 3
n 2.7)
C(n+3) [LH
1—
n+3 .
otherwise
rn+1)

See Also

gfun, NumGfun, bound_ratpoly, bound_rec



NumGfun[bound_ratpoly] - majorant series for rational
functions

Calling Sequence

bound_ratpoly(rat, z)

Parameters
rat - rational function

Z - name, variable of the rational function rat

Description
» Thebound_ratpoly command computes a majorant series for the series expansion at 0 of arational function.

» A magjorant series of aformal Laurent seriesf with complex coefficientsis a series g with nonnegative coeffi-
cients such that for al n, the the coefficients f[n] and g[n] of z*n respectively in f(z) and g(z) satisfy abs(f[n])
<=qg[n].

» Themajorant series returned by bound_ratpoly is of the form A/((z"))* (1-u*z)"m)+P(z) where A and u are
nonnegative constants, j and m are nonnegative integers, and P is a Laurent polynomial with nonnegative
coefficients. It isa“tight” bound in the sense that the radius of convergence of its power series expansion
matches that of the power series expansion of rat.

Examples
> w t h(gfun:-NunGfun):
> bound_ratpoly(1/(z+5), z);

1

5 [l—ézj G

> bound_rat pol y((5*z76+z+2)/ (z"3*(z"3+1)"2*(z+l)), z);

16147093
5000000 2° (1 — z)*

(32

See Also
ofun, NumGfun, ratpolytocoeff, bound_diffeq



NumGfun[bound rec] - bound a sequence given by a
recurrence relation; NumGfun[bound_rec_tail] - bound
the tails of a series whose general term satisfies a
recurrence relation

Calling Sequences
bound_rec(rec, u(n))

bound rec_tail(rec, u(n))

Parameters

rec - linear recurrence relation with polynomial coefficients, along with initial values
U - name; sequence name

n - name; variable of the sequenceu

Description

e Thebound_rec command computes a bound for the absolute value of the solution of a sequence given asthe
solution of arecurrence relation. The output is aformulainvolving the index n of the sequence.

e Thebound_rec tail command computes a bound for the series tails Sum(u(k), k=n..infinity), given arecur-
rence relation satisfied by u.

» Recurrences with no initial values are also alowed on input. In this case, the output is only determined up to a
constant factor, and is such that solutions defined for all nonnegative n admit a bound of the given form for a
suitable choice of constant. The constant depends on the particular choice of solution.

» Some intermediate computations are performed numerically, at a precision determined by the Digits environ-
ment variable. In particular, the value of Digits influences the precision at which some (rational) constants ap-
pearing in the boundsis computed. In rare cases, these functions may fail to produce afinite bound although
one exists, and increasing Digits can help. (It is a bug, however, if an incorrect bound is returned.)

Examples
wi t h(gf un: - NunGf un) :

\%

> bound_rec({l*u(n+l) = (n+l)*u(n), u(0)=3}, u(n));

18849555927 |

1000000000 121 @
> bound_rec({(2*n+2)"2*u(n+l) = -(n+1)*u(n), u(0)=1}, u(n));

(n+2) (n+1) [1];1

4 4.2)

n!

> # constant coefficients



8 ¢ NumGfun[bound rec] - bound a sequence given by arecurrence relation; NumGfun[bound rec tail] -
bound the tails of a series whose general term satisfies a recurrence relation

bound_rec({15*u(n)-4*u(n+l)-13*u(n+2) +5*u(n+3), u(0) = 17/5, u(l) =3, u(2) =
3/12, u(3) =0, u(4) =5, u(5 =0}, u(n));

3650256453

3 _ 2 . _1)7"
1000000000 RootOf(15 78 —4 _7° —13 _Z+5, index=1) +

(4.3)
9497435481 n=7
10000000000
1349743549 —4
1000000000
3497435481 n=6
10000000000
0 otherwise
> bound_rec_tail ({lI*(n+1)*u(n+l) = u(n), u(0)=1}, u(n));
e n<?2
1 n
(n+3) [_1 (4.4)
n+3 otherwise
Nn+1)

See Also
gfun, NumGfun, bound_diffeq



NumGfun[diffeqtoproc] - create a Maple procedure
from a differential equation

Calling Sequence

diffegtoproc(eq, y(z), [prec=precision, disks=disk_list])

Parameters

eq - linear differential equation with polynomial coefficients

y - name; function name

z - name; variable of the functiony

preci sion - (optional) positive integer; number of digits (of absolute precision)

di sks_list - (optiona) list of lists of the form [path, radius]

Description

» Thediffeqtoproc(eq, y(z)) command returns a Maple procedure p such that p(u, [precision]) (where u may
be apoint or a path) evaluatesy at u to the absolute precision precision. More precisely, p(u, [precision]) is
equivalent to evaldiffeq(eq, y(2), u, [precision]); see the help page of evaldiffeq for details.

« If the options precision and disks are given, diffegtoproc performs precomputations that make subsequent
evaluations to precisions up to precision at points within one of the disks given in disk_list faster. The ele-
ments of disk_list arelists of the form [path, radius] where path is apath (starting at the origin and avoiding
the singular points of eq) whose endpoint gives the center of the disk. The precomputed datais used, if pos-
sible, for calls of the form p(u, [precision]) where u isasingle point (as opposed to a path), and only in this
case. (Thus, the choice of the determination for multivalued functionsy is done at precomputation time.)

Examples
with(gfun): w th(Nunfun):

\%

> eq := diffeqtohondiffeq(hol exprtodiffeq(arctan(z),y(z)),y(z));
2
eq:= [—2 22+ (-2-1) [d—z y(z)], ¥(0) =0,D(y)(0) = 1 5
4 dz

> p = diffeqtoproc(eq, y(z)):
[ p([0, 1+, 2*1], 30), p([O0, -1+, 2*1], 30) 1;

[1.570796326794896619231321691640
+0.549306144334054845697622618461 ],

~1.570796326794896619231321691640 (52)
+0.549306144334054845697622618461 1]
> eq := holexprtodiffeq(AryAi(z), y(z));
1/6 2
d? 1 3t/3 p 3 / F(3)
eq:=1——y(z) —zy(z), y(0) = = DY) =-5 ——— 53
a7 3 F[2] 2«
3

> p :=diffeqtoproc(eq, y(z), 'prec'=12, 'disks'=[[-2.5,3],[2.5,3]]):
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> plot(p, -5..5);

4 2 4

-0.1

-0.2

-0.3

-0.4
> infolevel [gfun] := 2:
> p(-3, 10);

-0.3788142937 (5.9

> p(-3, 30);

p: using nmultiple-precision analytic continuation

rewite_path: final analytic continuation path is [0 0 -3]
ordinary_step_transition_matrix: 0 --> -3 ord=1, prec~=.54e-31, terns=88
Recal | that gfun:-Nunfun uses *absol ute* error.

-0.378814293677658074347243916500 (5.5)
> p(-42);

p: using nultiple-precision analytic continuation

rewite_path: final analytic continuation path is [0 0 -42]
ordinary_step_transition_matrix: 0 --> -42 ord=1, prec~=. 54e-11, terns=840

Recal | that gfun:-Nunm&un uses *absol ute* error.

0.0073966067 (5.6)

See Also

gfun, NumGfun, rectoproc, evaldiffeq



NumGfun[dominant_root] - dominant root of a
polynomial

Calling Sequence

dominant_root(pal, z, [r oot of ])

Parameters
pol - polynomial with algebraic coefficients and nonzero constant term
z - name; variable

root of - optiona keyword

Description

» Thedominant_root command computes one of the roots of pol of maximum multiplicity among those of
minimum absol ute value.

» The constant term of pol must be nonzero.
e Theoutputisalist of the form [root, multiplicity].
» With optionr oot of , if the dominant root is not rational, it is returned as a RootOf.

Examples
> wi th(gfun:-Num& un):

> dominant _root ((z-1)*(z"2+1)"2, z);

L, 2] (62)

> domi nant _root((z-1)*(z*2+1)"2, z, 'rootof');

[RootOf(_7> + 1, index=1), 2| (6.2)

See Also

gfun, NumGfun, bound_ratpoly

11



NumGfun[evaldiffeq], NumGfun[analytic_continuation]
- numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection
between regular points

Calling Sequences

evaldiffeq(eq, y(2), point, [precision])

evaldiffeq(eq, y(2), path, [precision], [ord=order], [monomials])
analytic_continuation(...)

transition_matrix(eq, y(z), path, [precision])

Parameters

eq - linear differential equation with polynomial coefficients

y - name; function name

z - name; variable of the functiony

poi nt - complex number; evaluation point

pat h - list of complex numbers; analytic continuation path

preci sion - (optional) positive integer; required absolute accuracy (in decimal digits)

ord - (optional) positive integer; number of terms of local expansion to return

Description

Basic Usage

» Theevaldiffeq(eq, y(2), point, precision) command eval uates the solution of the differential equation eq at
point with an absolute error bounded by 10*(-precision). The evaluation point must lie closer to zero than
any of the singular points of the differential equation. (The origin itself must be an ordinary point.)

» Themore general calling sequence evaldiffeq(eq, y(z), path, precision) evauates the function defined by an-
alytic continuation of the solution along a broken-line path starting at O and avoiding the singular points of
the equation, given asalist of vertices. In particular, evaldiffeq(eq, y(z), [point], precision) isequivalent to
evaldiffeg(eq, y(2), point, precision) if point lieswithin the disk where the latter is defined, and gives the
value of the solution defined on the Mittag-L effler star with center at O of the differential equation eq other-
wise.

 analytic_continuation is synonymous with evaldiffeq.

* Instead of the value of asingle solution, transition_matrix(eq, y(z), path, [precision]) computes the funda-
mental matrix at the endpoint of the path, corresponding to initial conditions'Y (z0)=Id at the starting point.
Thei-th row of Y(z) contains the value of the coefficient of zi in the Taylor expansion of each fundamental
solution. Initial values given in the differential equation areignored. The path does not need to start at 0. The
meaning of the other parameters is unchanged.

* Inall these cases, point and the elements of path are expected to be of type complex(numeric).

Regular Singular Points

» The endpoints of an analytic continuation path may also be regular singular points of the differential equation.
If z0 and z1 areregular (i.e., ordinary or regular singular) points, the entries of the transition matrix from z0

12



13 < NumGfun[evadiffeq], NumGfun[analytic_continuation] - numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection between regular points

to z1 along a certain path are the coefficients of the expression in acertain “local basis at z1” of the elements
of the “local basis at z0" extended by analytic continuation along that path. In other words, the transition ma-
trix sends the coefficients of the decomposition of a given solution on the first local basisto the coefficients
of the expression of the same solution on the second local basis. Local bases are defined in such away that
this generalizes the above definition of transition matrices between ordinary point.

Local bases can be computed using the local_basis command.

When the keyword parameter or d is set to a positive integer order, evaldiffeq returnsthe first order terms
of the generalized series expansion of the solution of interest at the endpoint of the path, in aformat illustrat-
ed below. Alternatively, the keyword mononi al s can be specified to annotate each numerical connection
constant with the leading term of the generalized series expansion of the corresponding local solution. If none
of these optionsis given, only the connection constant corresponding to the first element of the local basis
(corresponding in some sense to the “ asymptotically dominant” local solution) is returned.

Thereis no syntax for specifying “initial values’ at regular singular points as part of the equation eq. When
the origin isaregular singular point, evaldiffeq returns an expression involving symbolic constants _C[0],
_C[1], ... representing the coefficients of the decomposition of y(z) in the canonical basis at the origin.

Arbitrary algebraic numbers are allowed as part of analytic continuation paths when they correspond to regu-
lar singular points of the differential equation. They must be specified as indexed RootOfs.

Accuracy

All these functions are designed to ensure the accuracy of the output: it is abug if the result is not within
107(-precision) of the exact value of the function.

As an exception to the previousrule, regular singular connection problems for differential equations with a
single finite singular point currently rely on heuristic error estimates. (A warning is issued when such an esti-
mate is used.)

When the result is not a single floating-point number, the floating-point coefficients appearing in it are “ quot-
ed” using the empty symbol ™ to prevent automatic floating-point simplification of the output. This happens
in particular when the initial values contain symbolic parameters.

The Digits environment variable has no influence on the accuracy of the results. However, some internal
computations, including that of intermediate error bounds, are performed at precision Digits (typicaly, using
interval arithmetic to ensure that the final result remains rigorous). In rare cases (e.g., equations with singul ar-
ities at distance about 10"(-Digits) from each other), it may be necessary to increase Digits for the computa-
tion to succeed.

Likewise, evaluation points given in floating-point format are interpreted as exact rational numbers (or com-
plex numbers with rational real and imaginary parts) regardless of the setting of Digits.

Performance

These commands implement asymptotically fast algorithms, allowing in principle for evaluations at very high
precisions (up to millions of digits). However, the constant factors involved are comparatively large and the
cost grow fast with the complexity (order, degree, growth of a generic solution) of the equation.

They are less suitable to be called repeatedly, even at moderate precisions. In particular, potentially costly
bound computations are performed before each evaluation. For repeated evaluations at moderate precision in
aknown domain, try using diffeqtoproc instead.

Examples

> restart; wth(gfun:-NunGfun):

> evaldiffeq({diff(y(z),z)-y(z), y(0)=1}, y(z), 1, 50);

2.71828182845904523536028747135266249775724709369996 (7.1)

> analytic_continuation({(1+z"2)*diff(y(z),z,z)-(2*z+3)*y(z)+l*y(z), y(0)=Pi, Dvy)

(0)=-1}, y(z), [0, 2]);
37.6769250446 — 22.67735303821 (7.2



14 « NumGfun[evadiffeq], NumGfun[analytic_continuation] - numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection between regular points

Computation of alocal monodromy matrix by analytic continuation along a closed path around a singular point:
> eq := ¢gfun:-diffeqtohondiffeq(gfun:-holexprtodiffeq(arctan(z),y(z)),y(z));

d d’

eq:= k—ZZ[d— y(z)) +(-2-1) [—2 y(Z)],y(O) =0,D(y)(0) =1, 73
Z dz

> transition_matrix(eq, y(z), [2*I, -1+, 0, 1+, 2*1], 20);

Warning, initial conditions {y(0) =0, (D(y))(0) = 1} will be ignored

1.00000000000000000000 -9.42477796076937971539

74
0. 1.00000000000000000000 4

Numerical connection between an ordinary point and aregular singular point:
> evaldiffeq(eq, y(z), [0, 1], 30, "ord =3);

(-0.5000000000000000000000000000001) (ln(z =1I) + % I(z-1) — 1 (z— I)2]

8
+ (0.785398163397448309615660845820
+0.3465735902799726547086160607291)

> evaldiffeq(eq, y(z), [0, I], 30, '"nmononmials');

(-0.5000000000000000000000000000001) (In(z —1) +...)
+ (0.785398163397448309615660845820 (7.6)
+0.3465735902799726547086160607291) (1 +...)

> evaldiffeq(eq, y(z), [0, I], 30);
-0.5000000000000000000000000000001 (7.7)

> eq : = op(select(has, eq, 2));

(7.5

2
eq:= —22[%)’(2))+(—Z2—1) [ﬁ)’(l)] (78)

> evaldiffeq(eq, y(z), [0, I], 10, '"ord =3);

2 8
+ ((1.0000000000) _C,+ (0.7853981634 + 0.3465735903 I) _Cl)

1 1 2
((0.) _C, + (-0.50000000001) _C,) [ln(z—I) +5Hz=0) -2 (z=1) J 7.9

The same result expressed as a transition matrix:

> local _basis(eq, y(z), 0), local_basis(eq, y(z), 1);

1 3.1 5
l,z— -2+ =
V4 32 5z

BT SN SR
D+ i1z 1),1]

> transition_matrix(eq, y(z), [0, I], 10);

naetionLt,op2o Ly, 3L L
In(z =0+ 5 1(z=0) = (=D = - 1(z=D"+ - (

’

(7.10)

0. -0.50000000001

7.11
1.0000000000 0.7853981634 + 0.3465735903 1 (74

Algebraic numbers
> eq = (z72-2)*diff(y(z),z,2z) + z*y(z) + y(z);

eq:= (2 —2) [ d

2

7 V(z) | +¥(z) z+ y(2) (7.12)




15 « NumGfun[evadiffeq], NumGfun[analytic_continuation] - numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection between regular points

> alias(al pha=convert(sqrt(2), 'RootO'));
o (7.13)

> | ocal _basis(eq, y(z), alpha, 3);
1_%(“@ (z—ﬁ)ln(z—ﬁ)+;—2(3+2ﬁ)(11—10ﬁ+21n(z
D) (2-V2) 2T+ (g

2
JZ _l) (z—2)
4
> # [0,1,al pha] rather than [0, al pha] to work around a weakness
# of evalrC
transition_matrix(eq, y(z), [0, 1, alpha]l);

2.4938814696 2.4089417847
-0.2035417759 + 6.68738570981 0.2043720671 + 6.4596184954 1

(7.14)

(7.15)

A case where only heuristic error control is currently implemented:
> eq := holexprtodiffeq(Ei (z), y(z));

eq:=(-z+1) (% y(z)] +z &

2
d—2 y(z)] (7.16)

> evaldiffeq(eq, y(z), [0, 1], 20);

Warning, infinite radius of convergence at regular singular point O: rigorous error
bounds are not inplenented, falling back on heuristics

(1.31790215145440389486) _C, + (1.00000000000000000000) _C, (7.17)

See Also

ofun, NumGfun, diffeqtoproc, local_basis, nth_term



NumGfun[local basis] - “canonical” local basis of the
solution space of a linear ODE

Calling Sequence

local_basis(eq, y(2), point, [order])

Parameters

eq - linear differential equation with polynomial coefficients

y - name, function name

z - name; variable of the functiony

poi nt - complex number; point at which to compute the local basis

order - integer, truncation order

Description

e Thelocal_basis command returns the first few terms of the local basis of generalized series solutions at a giv-
en point of adifferential equation used by other NumGfun commands.

» The expansion point must be aregular (i.e., ordinary or regular singular) point, and can be specified as an ex-
pression of type complex(numeric) or as an indexed RootOf.

Examples

> wi th(gfun:-Nun& un):

Ordinary points:
> eq = diff(y(z),z,z,z)+2*(diff(y(z), z))+y(z);

Y [d y(z)j 1+ y(2) (8.1)
d23 dz
> local basis(eq, y(z), 0);
1 3 1 5 1 3 1 4 1 5 2 1 4 1 5
1 - = = _ = - = — — = R 8.2
[ 6z+602,z 32 24Z+3OZ,Z 62 GOZ (8.2
> |l ocal basis(eq, y(z), I);
1 3, 1 5 1 3 1 4 1 5
1——=(z-1 — (z—1 —I—-=(z-1)"— =— (z—-1 — (z—1
R e e e o R R A CE M C -
I U S U |
D' (20 - g (2= 17)
Regular singular point:
> eq = zxdiff(y(z),z, z,2)+2*y(z2);
d3
eq:=z [% y(Z)J +2y(z) (8.4
dz
> local basis(eq, y(z), 0);
2 13, 1 4, L3, 1 52> 1 4
1 Zln(z)+( 1444—121n(z)jz,z 3z+902,22 122 (8.5)

16



17 « NumGfun[local basis] - “canonical” local basis of the solution space of alinear ODE

Algebraic exponents and expansion points:

> eq ;= zM*(diff(y(z), z$4))+2*z73*(diff(y(z), 2$3))-3*z72*(diff(y(z), z,
z))+3*z*(diff(y(z), z))+(z+1)*y(z);

o4 d 3 d B d d
eq:=27 [dz4y( )J+22(d23y( )] 3 7 [dzz ]+3z(d2y(z)]+(z (86)
+1) ¥(2)
> | ocal _basis(eq, y(z), 0, 2);

Zl_ﬁln(z) 1 (-12+4J2 +7In(z )22 \/_(9+4\/—)

343
—%922‘J—(9+4ﬁ) zl+ﬁln(z) 34113 A2 (L1247 ®7)
+7In(z) (-9 +442), 21 V2 & 49 22 (. 9+4J_)]

> local _basis(eq, y(z), RootO(_Z"3-1, 'index'=2));

[1+[4181J?—1)(z—(—1)2/3)4+[ AL +I\/_j( 2/3),2

240 ' 240

2/3 1 2/3\% 1 7 1)2/3

U S R O VN A s 120”—]( ), (2

(2 (- + 2103 (- 02 —§<z—<-1>2/3>5,<z e
2/3 1 LY (L, (9 _9

(-1)2/3) +(4Iﬁ+4](z (-1)2/3) +(4OIH 4Oj(z

(-1*)]

See Also

gfun, NumGfun, evaldiffeq, DEtools[formal_sol]



NumGfun[plot_path] - display an analytic continuation
path

Calling Sequences

plot_path(eg, y(2), path)
plot_path(eq, y(2), path, 'rewrite)

Parameters

eq - linear differential equation with polynomial coefficients
y - name;, function name

z - name; variable of the functiony

pat h - list of complex numbers; analytic continuation path

Description

Plot the analytic continuation path path along with the singular points of eqg.

With option rewrite, first subdivide path to plot an approximation of the analytic continuation path that eval dif-
feqwould really use (by default) when asked to perform analytic continuation along that path.

Examples
> wi th(gfun:-NunGun):

> gfun:-Numf un: -pl ot _path((1+z*2)*diff(y(z),z,z)+y(z), y(z), [0, 1+, 2*I],
"rewrite');

See Also
NumGfun, evaldiffeg

18
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