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Comparison between binary and decimal
floating-point numbers

Nicolas Brisebarre, Christoph Lauter, Marc Mezzarobba, and Jean-Michel Muller

Abstract—We introduce an algorithm to compare a binary floating-point (FP) number and a decimal FP number, assuming the “binary
encoding” of the decimal formats is used, and with a special emphasis on the basic interchange formats specified by the IEEE 754-2008
standard for FP arithmetic. It is a two-step algorithm: a first pass, based on the exponents only, quickly eliminates most cases, then,
when the first pass does not suffice, a more accurate second pass is performed. We provide an implementation of several variants of our
algorithm, and compare them.

F

1 INTRODUCTION

The IEEE 754-2008 Standard for Floating-Point Arith-
metic [5] specifies binary (radix-2) and decimal (radix-10)
floating-point number formats for a variety of precisions.
The so-called “basic interchange formats” are presented
in Table 1.

The Standard neither requires nor forbids comparisons
between floating-point numbers of different radices (it
states that floating-point data represented in different formats
shall be comparable as long as the operands’ formats have the
same radix). However, such “mixed-radix” comparisons
may offer several advantages. It is not infrequent to read
decimal data from a database and to have to compare it
to some binary floating-point number. The comparison
may be inaccurate if the decimal number is preliminarily
converted to binary, or, respectively, if the binary number
is first converted to decimal.

Consider for instance the following C code:
double x = ...;
_Decimal64 y = ...;
if (x <= y)

...

The standardization of decimal floating-point arithmetic
in C [6] is still at draft stage, and compilers supporting
decimal floating-point arithmetic handle code sequences
such as the previous one at their discretion and often
in an unsatisfactory way. As it occurs, Intel’s icc 12.1.3
translates this sequence into a conversion from binary to
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binary32 binary64 binary128

precision (bits) 24 53 113
𝑒min −126 −1022 −16382
𝑒max +127 +1023 +16383

decimal64 decimal128

precision (digits) 16 34
𝑒min −383 −6143
𝑒max +384 +6144

TABLE 1
The basic binary and decimal interchange formats

specified by the IEEE 754-2008 Standard.

decimal followed by a decimal comparison. The compiler
emits no warning that the boolean result might not be
the expected one because of rounding.

This kind of strategy may lead to inconsistencies.
Consider such a “naïve” approach built as follows:
when comparing a binary floating-point number 𝑥2 of
format ℱ2, and a decimal floating-point number 𝑥10 of
format ℱ10, we first convert 𝑥10 to the binary format ℱ2

(that is, we replace it by the ℱ2 number nearest 𝑥10), and
then we perform the comparison in binary. Denote the
comparison operators so defined as <○, 6○, >○, and >○.
Consider the following variables (all exactly represented
in their respective formats):

∙ 𝑥 = 3602879701896397/255, declared as a binary64
number;

∙ 𝑦 = 13421773/227, declared as a binary32 number;
∙ 𝑧 = 1/10, declared as a decimal64 number.

Then it holds that 𝑥 <○ 𝑦, but also 𝑦 6○ 𝑧 and 𝑧 6○ 𝑥.
Such an inconsistent result might for instance suffice to
prevent a sorting program from terminating.

Remark that there exists a longer intermediate format
both inputs 𝑥2 and 𝑥10 could be converted to such that
the naïve method yields a correct answer. However, that
method requires a correctly rounded radix conversion,
which is an intrinsically more expensive operation than
the comparison itself.
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In the following, we describe algorithms to perform
such “exact” comparisons between binary numbers in
any of the basic binary interchange formats and decimal
numbers in any of the basic decimal interchange formats.

It is natural to require that mixed-radix comparisons
not signal any floating-point exception, except in situa-
tions that parallel exceptional conditions specified in the
Standard [5, Section 5.11] for regular comparisons. For
this reason, we avoid floating-point operations that might
signal exceptions, and mostly use integer arithmetic to
implement our comparisons.

This paper is an extended version of the article [2].

2 SETTING AND OUTLINE
We consider a binary format of precision 𝑝2, minimum
exponent 𝑒min

2 and maximum exponent 𝑒max
2 , and a

decimal format of precision 𝑝10, minimum exponent 𝑒min
10

and maximum exponent 𝑒max
10 . We want to compare a

binary floating-point number 𝑥2 and a decimal floating-
point number 𝑥10.

Without loss of generality we assume 𝑥2 > 0 and
𝑥10 > 0 (when 𝑥2 and 𝑥10 are negative, the problem
reduces to comparing −𝑥2 and −𝑥10, and when they
have different signs the comparison is straightforward).
The floating-point representations of 𝑥2 and 𝑥10 are

𝑥2 =𝑀2 · 2𝑒2−𝑝2+1,

𝑥10 =𝑀10 · 10𝑒10−𝑝10+1,

where 𝑀2, 𝑀10, 𝑒2 and 𝑒10 are integers that satisfy:

𝑒min
2 − 𝑝2 + 1 6 𝑒2 6 𝑒max

2 ,

𝑒min
10 6 𝑒10 6 𝑒max

10 ,

2𝑝2−1 6𝑀2 6 2𝑝2 − 1,

1 6𝑀10 6 10𝑝10 − 1

(1)

with 𝑝2, 𝑝10 > 1. (The choice of lower bound for 𝑒2 makes
the condition 2𝑝2−1 6𝑀2 hold even for subnormal binary
numbers.)

We assume that the so-called binary encoding [5], [8] of
IEEE 754-2008 is used for the decimal format, so that the
integer 𝑀10 is easily accessible in binary. Denote by

𝑝′10 = ⌈𝑝10 log2 10⌉ ,

the number of bits that are necessary for representing
the decimal significands in binary.

When 𝑥2 and 𝑥10 have significantly different orders
of magnitude, examining their exponents will suffice
to compare them. Hence, we first perform a simple
exponent-based test (Section 3). When this does not suf-
fice, a second step compares the significands multiplied
by suitable powers of 2 and 5. We compute “worst cases”
that determine how accurate the second step needs to
be (Section 4), and show how to implement it efficiently
(Section 5). Section 6 is an aside describing a simpler
algorithm that can be used if we only want to decide
whether 𝑥2 and 𝑥10 are equal. Finally, Section 7 discusses
our implementation of the comparison algorithms and
presents experimental results.

3 FIRST STEP: ELIMINATING THE “SIMPLE
CASES” BY EXAMINING THE EXPONENTS

3.1 Normalization
As we have

1 6𝑀10 6 10𝑝10 − 1,

there exists a unique 𝜈 ∈ {0, 1, 2, . . . , 𝑝′10 − 1} such that

2𝑝
′
10−1 6 2𝜈𝑀10 6 2𝑝

′
10 − 1.

Our initial problem of comparing 𝑥2 and 𝑥10 reduces to
comparing 𝑀2 · 2𝑒2−𝑝2+1+𝜈 and (2𝜈𝑀10) · 10𝑒10−𝑝10+1.

The fact that we “normalize” the decimal significand
𝑀10 by a binary shift between two consecutive powers
of two is of course questionable; 𝑀10 could also be
normalized into the range 10𝑝10−1 6 10𝑡 ·𝑀10 6 10𝑝10 −1.
However, as hardware support for decimal floating-point
arithmetic is not widespread, a decimal normalization
would require a loop, provoking pipeline stalls, whereas
the proposed binary normalization can exploit an existing
hardware leading-zero counter with straight-line code.

3.2 Comparing the Exponents
Define ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑚 =𝑀2,

ℎ = 𝑒2 − 𝑒10 + 𝜈 + 𝑝10 − 𝑝′10 + 1,

𝑛 =𝑀10 · 2𝜈 ,
𝑔 = 𝑒10 − 𝑝10 + 1,

𝑤 = 𝑝′10 − 𝑝2 − 1

(2)

so that {︃
2𝜈𝑥2 = 𝑚 · 2ℎ+𝑔+𝑤,
2𝜈𝑥10 = 𝑛 · 10𝑔.

Our comparison problem becomes:

Compare 𝑚 · 2ℎ+𝑤 with 𝑛 · 5𝑔 .

We have

𝑚min = 2𝑝2−1 6 𝑚 6 𝑚max = 2𝑝2 − 1,

𝑛min = 2𝑝
′
10−1 6 𝑛 6 𝑛max = 2𝑝

′
10 − 1.

(3)

It is clear that 𝑚min · 2ℎ+𝑤 > 𝑛max · 5𝑔 implies 𝑥2 > 𝑥10,
while 𝑚max ·2ℎ+𝑤 < 𝑛min ·5𝑔 implies 𝑥2 < 𝑥10. This gives

(1− 2−𝑝
′
10) · 5𝑔 < 2ℎ−2 ⇒ 𝑥10 < 𝑥2,

(1− 2−𝑝2) · 2ℎ < 5𝑔 ⇒ 𝑥2 < 𝑥10.
(4)

In order to compare 𝑥2 and 𝑥10 based on these
implications, define

𝜙(ℎ) = ⌊ℎ · log5 2⌋.

Proposition 1. We have

𝑔 < 𝜙(ℎ) ⇒ 𝑥2 > 𝑥10,

𝑔 > 𝜙(ℎ) ⇒ 𝑥2 < 𝑥10.

Proof: If 𝑔 < 𝜙(ℎ) then 𝑔 6 𝜙(ℎ) − 1, hence 𝑔 6
ℎ log5 2 − 1. This implies that 5𝑔 6 (1/5) · 2ℎ < 2ℎ/(4 ·
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b32/d64 b32/d128 b64/d64 b64/d128 b128/d64 b128/d128

𝑝2 24 24 53 53 113 113
𝑝10 16 34 16 34 16 34
𝑝′10 54 113 54 113 54 113
𝑤 29 88 0 59 −60 −1

ℎ
(1)
min, ℎ

(1)
max −570, 526 −6371, 6304 −1495, 1422 −7296, 7200 −16915, 16782 −22716, 22560
𝑠min 18 23 19 23 27 27

datatype int32 int64 int32 int64 int64 int64

TABLE 2
The various parameters involved in Step 1 of the comparison algorithm.

(1 − 2−𝑝
′
10)), therefore, from (4), 𝑥10 < 𝑥2. If 𝑔 > 𝜙(ℎ)

then 𝑔 > 𝜙(ℎ) + 1, hence 𝑔 > ℎ log5 2, so that 5𝑔 > 2ℎ >
(1− 2−𝑝2) · 2ℎ. This implies, from (4), 𝑥2 < 𝑥10.

Now consider the range of ℎ: by (2), ℎ lies between

ℎ
(1)
min = (𝑒min

2 − 𝑝2 + 1)− 𝑒max
10 + 𝑝10 − 𝑝′10 + 1

and

ℎ
(1)
max = 𝑒max

2 − 𝑒min
10 + 𝑝10.

That range is given in Table 2 for the basic IEEE formats.
Knowing that range, it is easy to implement 𝜙 as follows.

Proposition 2. Denote by ⌊·⌉ the nearest integer function.
For large enough 𝑠 ∈ N, the function defined by

𝜙(ℎ) = ⌊𝐿 · ℎ · 2−𝑠⌋, with 𝐿 = ⌊2𝑠 log5 2⌉,

satisfies 𝜙(ℎ) = 𝜙(ℎ) for all ℎ in the range [ℎ
(1)
min, ℎ

(1)
max].

Proposition 2 is an immediate consequence of the
irrationality of log5 2. For known, moderate values of
ℎ
(1)
min and ℎ

(1)
max, the optimal choice 𝑠min of 𝑠 is easy to find

and small. For instance, if the binary format is binary64
and the decimal format is decimal64, then 𝑠min = 19.

Table 2 gives the value of 𝑠min for the basic IEEE
formats. The product 𝐿 · ℎ, for ℎ in the indicated range
and 𝑠 = 𝑠min, can be computed exactly in (signed or
unsigned) integer arithmetic, with the indicated data type.
Computing ⌊𝜉 · 2−𝛽⌋ of course reduces to a right-shift by
𝛽 bits.

Propositions 1 and 2 yield to the following algorithm.

Algorithm 1. First, exponent-based step
1 compute ℎ = 𝑒2 − 𝑒10 + 𝜈 + 𝑝10 − 𝑝′10 + 1 and 𝑔 =
𝑒10 − 𝑝10 + 1;

2 with the appropriate value of 𝑠, compute 𝜙(ℎ) =
⌊𝐿 · ℎ · 2−𝑠⌋ using integer arithmetic;

3 if 𝑔 < 𝜙(ℎ) then return “𝑥2 > 𝑥10”, else if 𝑔 > 𝜙(ℎ)
then return “𝑥2 < 𝑥10”, else perform the second step.

Note that, when 𝑥10 admits multiple distinct represen-
tations in the precision-𝑝10 decimal format (i.e., when its
cohort is non-trivial [5]), the success of the first step may
depend on the specific representation passed as input. For
instance, assume that the binary and decimal formats are
binary64 and decimal64, respectively. Both 𝐴 = {𝑀10 =
1015, 𝑒10 = 0} and 𝐵 = {𝑀10 = 1, 𝑒10 = 15} are valid
representations of the integer 1. Assume we are trying

to compare 𝑥10 = 1 to 𝑥2 = 2. Using representation 𝐴,
we have 𝜈 = 4, ℎ = −32, and 𝜙(ℎ) = −14 > 𝑔 = −15,
hence the test from Algorithm 1 shows that 𝑥10 < 𝑥2. In
contrast, if 𝑥10 is given in the form 𝐵, we get 𝜈 = 53,
𝜙(ℎ) = 𝜙(2) = 0 = 𝑔, and the test is inconclusive.

3.3 How Often is the First Step Enough?

We may quantify the quality of this first filter as follows.
We say that Algorithm 1 succeeds if it answers “𝑥2 > 𝑥10”
or “𝑥2 < 𝑥10” without proceeding to the second step,
and fails otherwise. Let 𝑋2 and 𝑋10 denote the sets of
representations of positive, finite numbers in the binary,
resp. decimal formats of interest. (In the case of 𝑋2, each
number has a single representation.) Assuming zeros,
infinities, and NaNs have been handled before, the input
of Algorithm 1 may be thought of as a pair (𝜉2, 𝜉10) ∈
𝑋2 ×𝑋10.

Proposition 3. The proportion of input pairs (𝜉2, 𝜉10) ∈
𝑋2 ×𝑋10 for which Algorithm 1 fails is bounded by

min

{︂
1

𝑒max
10 − 𝑒min

10 + 1
,

4

𝑒max
2 − 𝑒min

2 + 1

}︂
,

assuming 𝑝2 > 3.

Proof. The first step fails if and only if 𝜙(ℎ) = 𝑔. Write
ℎ = 𝑒2+𝑡, that is, 𝑡 = 𝑝10−𝑝′10+1−𝑒10+𝜈. Then 𝜙(ℎ) = 𝑔
rewrites as

⌊(𝑒2 + 𝑡) log5 2⌋ = 𝑔,

which implies

−𝑡+ 𝑔 log2 5 6 𝑒2 < −𝑡+ (𝑔 + 1) log2 5

< −𝑡+ 𝑔 log2 5 + 2.4.

The value of 𝜈 is determined by 𝑀10, so that 𝑡 and
𝑔 = 𝑒10 − 𝑝10 + 1 depend on 𝜉10 only. Thus, for any
given 𝜉10 ∈ 𝑋10, there can be at most 3 values of 𝑒2 for
which 𝜙(ℎ) = 𝑔.

A similar argument shows that for given 𝑒2 and 𝑀10,
there exist at most one value of 𝑒10 such that 𝜙(ℎ) = 𝑔.

Let 𝑋norm
2 and 𝑋sub

2 be the subsets of 𝑋2 consisting of
normal and subnormal numbers respectively. Let 𝑟𝑖 =
𝑒max
𝑖 − 𝑒min

𝑖 + 1. The number 𝑁norm of pairs (𝜉2, 𝜉10) ∈
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𝑋norm
2 ×𝑋10 such that 𝜙(ℎ) = 𝑔 satisfies

𝑁norm 6 #{𝑀10 : 𝜉10 ∈ 𝑋10} ·#{𝑀2 : 𝜉2 ∈ 𝑋norm
2 }

·#{(𝑒2, 𝑒10) : 𝜉2 ∈ 𝑋norm
2 ∧ 𝜙(ℎ) = 𝑔}

6 (10𝑝10 − 1) · 2𝑝2−1 ·min{𝑟2, 3𝑟10}.

For subnormal 𝑥2, we have the bound

𝑁sub := #{(𝜉2, 𝜉10) ∈ 𝑋sub
2 ×𝑋10 : 𝜙(ℎ) = 𝑔}

6 #{𝑀10} ·#𝑋sub
2

= (10𝑝10 − 1) · (2𝑝2−1 − 1).

The total number of elements of 𝑋2 ×𝑋10 for which
the first step fails is bounded by 𝑁norm +𝑁sub. This is to
be compared with

#𝑋2 = 𝑟2 · 2𝑝2−1 + (𝑝2 − 1) · (2𝑝2−1 − 1)

> (𝑟2 + 1) · 2𝑝2−1,

#𝑋10 = 𝑟10 · (10𝑝10 − 1).

We obtain
𝑁norm +𝑁sub

#(𝑋2 ×𝑋10)
6 min

{︂
1

𝑟10
,
4

𝑟2

}︂
.

These are rough estimates. One way to get tighter
bounds for specific formats is simply to count, for each
value of 𝜈, the pairs (𝑒2, 𝑒10) such that 𝜙(ℎ) = 𝑔. For
instance, in the case of comparison between binary64
and decimal64 floating-point numbers, one can check
that the failure rate in the sense of Proposition 3 is less
than 0.1%.

As a matter of course, pairs (𝜉2, 𝜉10) will almost
never be equidistributed in practice. Hence the previous
estimate should not be interpreted as a probability of
success of Step 1. It seems more realistic to assume that
a well-written numerical algorithm will mostly perform
comparisons between numbers which are suspected to be
close to each other. For instance, in an iterative algorithm
where comparisons are used as part of a convergence test,
it is to be expected that most comparisons need to proceed
to the second step. Conversely, there are scenarios, e.g.,
checking for out-of-range data, where the first step should
be enough.

4 SECOND STEP: A CLOSER LOOK AT THE
SIGNIFICANDS
4.1 Problem Statement
In the following we assume that 𝑔 = 𝜙(ℎ), i.e.,

𝑒10 − 𝑝10 + 1 = ⌊(𝑒2 − 𝑒10 + 𝜈 + 𝑝10 − 𝑝′10 + 1) log5(2)⌋ .

(Otherwise, the first step already allowed us to compare
𝑥2 and 𝑥10.)

Define a function

𝑓(ℎ) =
5𝜙(ℎ)

2ℎ+𝑤
.

We have ⎧⎨⎩ 𝑓(ℎ) · 𝑛 > 𝑚⇒ 𝑥10 > 𝑥2,
𝑓(ℎ) · 𝑛 < 𝑚⇒ 𝑥10 < 𝑥2,
𝑓(ℎ) · 𝑛 = 𝑚⇒ 𝑥10 = 𝑥2.

(5)

The second test consists in performing this comparison,
with 𝑓(ℎ) · 𝑛 replaced by an accurate enough approxima-
tion.

In order to ensure that an approximate test is indeed
equivalent to (5), we need a lower bound 𝜂 on the
minimum nonzero value of

𝑑ℎ(𝑚,𝑛) =

⃒⃒⃒⃒
5𝜙(ℎ)

2ℎ+𝑤
− 𝑚

𝑛

⃒⃒⃒⃒
(6)

that may appear at this stage. We want 𝜂 to be as tight
as possible in order to avoid unduly costly computa-
tions when approximating 𝑓(ℎ) · 𝑛. The search space is
constrained by the following observations.

Proposition 4. The equality 𝑔 = 𝜙(ℎ) where 𝑔 and ℎ are
defined by (2) can hold only if

𝑒min
2 − 𝑝2 − 𝑝′10 + 3

1 + log5 2
6 ℎ <

𝑒max
2 + 2

1 + log5 2
. (7)

Additionally, 𝑛 satisfies the following properties:
1) if 𝑛 > 10𝑝10 , then 𝑛 is even;
2) if 𝜈′ = ℎ+𝜙(ℎ)−𝑒max

2 +𝑝′10−2 is nonnegative (which
holds for large enough ℎ), then 2𝜈

′
divides 𝑛.

Proof: From (2), assuming 𝑔 = 𝜙(ℎ), we get

𝑒2 = ℎ+ 𝑔 + 𝑝′10 − 𝜈 − 2,

so that (since 𝑒min
2 − 𝑝2 + 1 6 𝑒2 6 𝑒max

2 )

𝑒min
2 − 𝑝2 + 1 6 ℎ+ 𝜙(ℎ)− 𝜈 + 𝑝′10 − 2 6 𝑒max

2 ,

hence

𝑒min
2 −𝑝2+𝜈−𝑝′10+3 6 (1+ log5 2)ℎ < 𝑒max

2 +𝜈−𝑝′10+3,

and (7) follows because 0 6 𝜈 6 𝑝′10 − 1.
The binary normalization of 𝑀10, yielding 𝑛, implies

that 2𝜈 | 𝑛. If 𝑛 > 10𝑝10 , then, by (1) and (2), it follows
that 𝜈 > 1 and 𝑛 is even. As ℎ+𝜙(ℎ)−𝜈 6 𝑒max

2 −𝑝′10+2,
we also have 𝜈 > 𝜈′. Since 𝜙 is increasing, there exists ℎ0
such that 𝜈′ > 0 for ℎ > ℎ0.

Table 3 gives the range (7) for ℎ with respect to the
comparisons between basic IEEE formats.

4.2 Required Worst-Case Accuracy
Let us now deal with the problem of computing 𝜂,
considering 𝑑ℎ(𝑚,𝑛) under the constraints given by
Equation (3) and Proposition 4. A similar problem was
considered by Cornea et al. [3] in the context of correctly
rounded binary to decimal conversions. Their techniques
yield worst and bad cases for the approximation problem
we consider. We will take advantage of them in Section 7
to test our algorithms on many cases when 𝑥2 and 𝑥10 are
very close. Here, we favor a different approach that is less
computationally intensive and mathematically simpler,
making the results easier to check either manually or
with a proof-assistant.

Problem 1. Find the smallest nonzero value of

𝑑ℎ(𝑚,𝑛) =

⃒⃒⃒⃒
5𝜙(ℎ)

2ℎ+𝑤
− 𝑚

𝑛

⃒⃒⃒⃒
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b32/d64 b32/d128 b64/d64 b64/d128 b128/d64 b128/d128

ℎ
(2)
min, ℎ

(2)
max −140, 90 −181, 90 −787, 716 −828, 716 −11565, 11452 −11606, 11452

𝑔
(2)
min, 𝑔

(2)
max −61, 38 −78, 38 −339, 308 −357, 308 −4981, 4932 −4999, 4932

#𝑔 100 117 648 666 9914 9932

ℎ0 54 12 680 639 11416 11375

TABLE 3
Range of ℎ for which we may have 𝑔 = 𝜙(ℎ), and size of the table used in the “direct method” of Section 5.1.

subject to the constraints⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2𝑝2−1 6 𝑚 6 2𝑝2 − 1,

2𝑝
′
10−1 6 𝑛 6 2𝑝

′
10 − 1,

ℎ
(2)
min 6 ℎ 6 ℎ

(2)
max,

𝑛 is even if 𝑛 > 10𝑝10 ,

if ℎ > ℎ0, then 2𝜈
′
| 𝑛

where

ℎ
(2)
min =

⌈︂
𝑒min
2 − 𝑝2 − 𝑝′10 + 3

1 + log5 2

⌉︂
,

ℎ
(2)
max =

⌊︂
𝑒max
2 + 2

1 + log5 2

⌋︂
,

ℎ0 =

⌈︂
𝑒max
2 − 𝑝′10 + 3

1 + log5 2

⌉︂
,

𝜈′ = ℎ+ 𝜙(ℎ)− 𝑒max
2 + 𝑝′10 − 2.

We recall how such a problem can be solved using the
classical theory of continued fractions [4], [7], [9].

Given 𝛼 ∈ Q, build two finite sequences (𝑎𝑖)06𝑖6𝑛 and
(𝑟𝑖)06𝑖6𝑛 by setting 𝑟0 = 𝛼 and{︃

𝑎𝑖 = ⌊𝑟𝑖⌋ ,
𝑟𝑖+1 = 1/(𝑟𝑖 − 𝑎𝑖) if 𝑎𝑖 ̸= 𝑟𝑖.

For all 0 6 𝑖 6 𝑛, the rational number

𝑝𝑖
𝑞𝑖

= 𝑎0 +
1

𝑎1 +
1

. . . +
1

𝑎𝑖

is called the 𝑖th convergent of the continued fraction
expansion of 𝛼. Observe that the process defining the 𝑎𝑖 es-
sentially is the Euclidean algorithm. If we assume 𝑝−1 = 1,
𝑞−1 = 0, 𝑝0 = 𝑎0, 𝑞0 = 1, we have 𝑝𝑖+1 = 𝑎𝑖+1𝑝𝑖 + 𝑝𝑖−1,
𝑞𝑖+1 = 𝑎𝑖+1𝑞𝑖 + 𝑞𝑖−1, and 𝛼 = 𝑝𝑛/𝑞𝑛.

It is a classical result [7, Proposition 19] that any
rational number 𝑚/𝑛 such that⃒⃒⃒

𝛼− 𝑚

𝑛

⃒⃒⃒
6

1

2𝑛2

is a convergent of the continued fraction expansion of 𝛼.
For basic IEEE formats, it turns out that this classical
result is enough to solve Problem 1, as cases when it is
not precise enough can be handled in an ad hoc way.

First consider the case max(0,−𝑤) 6 ℎ 6 𝑝2. We can
then write

𝑑ℎ(𝑚,𝑛) =
|5𝜙(ℎ)𝑛− 2ℎ+𝑤𝑚|

2ℎ+𝑤𝑛

where the numerator and denominator are both integers.
If 𝑑ℎ(𝑚,𝑛) ̸= 0, we have |5𝜙(ℎ)𝑛 − 𝑚2ℎ+𝑤| > 1, hence
𝑑ℎ(𝑚,𝑛) > 1/(2ℎ+𝑤𝑛) > 2𝑝2−ℎ−2𝑝′10+1 > 2−2𝑝′10+1. For
the range of ℎ where 𝑑ℎ(𝑚,𝑛) might be zero, the non-zero
minimum is thus no less than 2−2𝑝′10+1.

If now 𝑝2 + 1 6 ℎ 6 ℎ
(2)
max, then ℎ + 𝑤 > 𝑝′10, so 5𝜙(ℎ)

and 2ℎ+𝑤 are integers, and 𝑚2ℎ+𝑤 is divisible by 2𝑝
′
10 . As

𝑛 6 2𝑝
′
10 −1, we have 𝑑ℎ(𝑚,𝑛) ̸= 0. To start with, assume

that 𝑑ℎ(𝑚,𝑛) 6 2−2𝑝′10−1. Then, the integers 𝑚 and 𝑛 6
2𝑝

′
10 − 1 satisfy⃒⃒⃒⃒

5𝜙(ℎ)

2ℎ+𝑤
− 𝑚

𝑛

⃒⃒⃒⃒
6 2−2𝑝′10−1 <

1

2𝑛2
,

and hence 𝑚/𝑛 is a convergent of the continued fraction
expansion of 𝛼 = 5𝜙(ℎ)/2ℎ+𝑤.

We compute the convergents with denominators less
than 2𝑝

′
10 and take the minimum of the |𝛼 − 𝑝𝑖/𝑞𝑖| for

which there exists 𝑘 ∈ N such that 𝑚 = 𝑘𝑝𝑖 and 𝑛 = 𝑘𝑞𝑖
satisfy the constraints of Problem 1. Notice that this strat-
egy only yields the actual minimum nonzero of 𝑑ℎ(𝑚,𝑛)
if we eventually find, for some ℎ, a convergent with
|𝛼 − 𝑝𝑖/𝑞𝑖| < 2−2𝑝′10−1. Otherwise, taking 𝜂 = 2−2𝑝′10−1

yields a valid (yet not tight) lower bound.
The case ℎ(2)min 6 ℎ 6 min(0,−𝑤) is similar. A numerator

of 𝑑ℎ(𝑚,𝑛) then is |2−ℎ−𝑤𝑛−5−𝜙(ℎ)𝑚| and a denominator
is 5−𝜙(ℎ)𝑛. We notice that 5−𝜙(ℎ) > 2𝑝

′
10 if and only

if ℎ 6 −𝑝′10. If −𝑝′10 + 1 6 ℎ 6 min(0,−𝑤) and
𝑑ℎ(𝑚,𝑛) ̸= 0, we have |2−ℎ𝑛 − 5−𝜙(ℎ)𝑚| > 1, hence
𝑑ℎ(𝑚,𝑛) > 1/(5−𝜙(ℎ)𝑛) > 2−2𝑝′10 . For ℎ(2)min 6 ℎ 6 −𝑝′10,
we use the same continued fraction tools as above.

There remains the case min(0,−𝑤) 6 ℎ 6 max(0,−𝑤).
If 0 6 ℎ 6 −𝑤, a numerator of 𝑑ℎ(𝑚,𝑛) is |5𝜙(ℎ)2−ℎ−𝑤𝑛−
𝑚| and a denominator is 𝑛. Hence, if 𝑑ℎ(𝑚,𝑛) ̸= 0, we
have 𝑑ℎ(𝑚,𝑛) > 1/𝑛 > 2𝑝

′
10 . If −𝑤 6 ℎ 6 0, a numerator

of 𝑑ℎ(𝑚,𝑛) is |𝑛 − 5−𝜙(ℎ)2ℎ+𝑤𝑚| and a denominator is
5−𝜙(ℎ)2ℎ+𝑤𝑛 6 5 · 2−ℎ2ℎ+𝑤𝑛 < 5 · 22𝑝′10−𝑝2−1. It follows
that if 𝑑ℎ(𝑚,𝑛) ̸= 0, we have 𝑑ℎ(𝑚,𝑛) > 1/5 ·2−2𝑝′10+𝑝2+1.

Proposition 5. The minimum nonzero values of 𝑑ℎ(𝑚,𝑛)
under the constraints from Problem 1 for the basic IEEE
formats are attained for the parameters given in Table 4.
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ℎ 𝑚 𝑛 log2(𝜂
−1)

b32/d64 50 10888194 13802425659501406 111.40
b32/d128 −159 11386091 8169119658476861812680212016502305 229.57
b64/d64 −275 4988915232824583 12364820988483254 113.68

b64/d128 −818 5148744585188163 9254355313724266263661769079234135 233.58
b128/d64 2546 7116022508838657793249305056613439 13857400902051554 126.77
b128/d128 10378 7977485665655127446147737154136553 9844227914381600512882010261817769 237.14

TABLE 4
Worst cases for 𝑑ℎ(𝑚,𝑛) and corresponding lower bounds 𝜂.

5 INEQUALITY TESTING

As already mentioned, the first step of the full comparison
algorithm is straightforwardly implementable in 32-bit
or 64-bit integer arithmetic. The second step reduces to
comparing 𝑚 and 𝑓(ℎ) ·𝑛, and we have seen in Section 4
that it is enough to know 𝑓(ℎ) with a relative accuracy
given by the last column of Table 4. We now discuss
several ways to perform that comparison. The main
difficulty is to efficiently evaluate 𝑓(ℎ)·𝑛 with just enough
accuracy.

5.1 Direct Method
A direct implementation of Equation (5) just replaces 𝑓(ℎ)
with a sufficiently accurate approximation, read in a table
indexed with ℎ. The actual accuracy requirements can
be stated as follows. Recall that 𝜂 denotes a (tight) lower
bound on (6).

Proposition 6. Assume that 𝜇 approximates 𝑓(ℎ) · 𝑛 with
relative accuracy 𝜖 < 𝜂/2−𝑤+2 or better, that is,

|𝑓(ℎ) · 𝑛− 𝜇| 6 𝜖𝑓(ℎ) · 𝑛 < 𝜂

2−𝑤+2
𝑓(ℎ) · 𝑛. (8)

The following implications hold:⎧⎪⎨⎪⎩
𝜇 > 𝑚+ 𝜖 · 2𝑝2+1 =⇒ 𝑥10 > 𝑥2,

𝜇 < 𝑚− 𝜖 · 2𝑝2+1 =⇒ 𝑥10 < 𝑥2,

|𝑚− 𝜇| 6 𝜖 · 2𝑝2+1 =⇒ 𝑥10 = 𝑥2.

(9)

Proof: First notice that 𝑓(ℎ) 6 2−𝑤 = 2𝑝2−𝑝
′
10+1 for

all ℎ. Since 𝑛 < 2𝑝
′
10 , condition (8) implies |𝜇− 𝑓(ℎ) ·𝑛| <

2𝑝2+1𝜖, and hence |𝑓(ℎ) · 𝑛−𝑚| > |𝜇−𝑚| − 2𝑝2+1𝜖.
Now consider each of the possible cases that appear

in (9). If |𝜇 −𝑚| > 2𝑝2+1𝜖, then 𝑓(ℎ) · 𝑛 −𝑚 and 𝜇 −𝑚
have the same sign. The first two implications from (5)
then translate into the corresponding cases from (9).

If finally |𝜇−𝑚| 6 2𝑝2+1𝜖, then the triangle inequality
yields |𝑓(ℎ)·𝑛−𝑚| 6 2𝑝2+2𝜖, which implies |𝑓(ℎ)−𝑚/𝑛| <
2𝑝2+2𝜖/𝑛 < 2𝑝2+𝑤𝜂/𝑛 6 𝜂. By definition of 𝜂, this cannot
happen unless 𝑚/𝑛 = 𝑓(ℎ). This accounts for the last
case.

For instance, in the case of binary64–decimal64 com-
parisons, it is more than enough to compute the prod-
uct 𝑓(ℎ) · 𝑛 in 128-bit arithmetic.

Proposition 4 gives the number of values of ℎ to con-
sider in the table of 𝑓(ℎ), which grows quite large (23.5 kB
for b64/d64 comparisons, 721 kB in the b128/d128 case,

assuming a memory alignment on 8-byte boundaries).
However, it could possibly be shared with other algo-
rithms such as binary-decimal conversions. Additionally,
ℎ is available early in the algorithm flow, so that the
memory latency for the table access can be hidden behind
the first step.

The number of elements in the table can be reduced
at the price of a few additional operations. Several
consecutive ℎ map to a same value 𝑔 = 𝜙(ℎ). The
corresponding values of 𝑓(ℎ) = 2𝜙(ℎ)·log2 5−ℎ are binary
shifts of each other. Hence, we may store the most
significant bits of 𝑓(ℎ) as a function of 𝑔, and shift the
value read off the table by an appropriate amount to
recover 𝑓(ℎ). The table size goes down by a factor of
about log2(5) ≈ 2.3.

More precisely, define 𝐹 (𝑔) = 5𝑔2−𝜓(𝑔), where

𝜓(𝑔) = ⌊𝑔 · log2 5⌋. (10)

We then have 𝑓(ℎ) = 𝐹 (𝜙(ℎ)) · 2−𝜌(ℎ) with 𝜌(ℎ) = ℎ −
𝜓(𝜙(ℎ)). The computation of 𝜓 and 𝜌 is similar to that
of 𝜙 in Step 1. In addition, we may check that

1 6 𝐹 (𝜙(ℎ)) < 2 and 0 6 𝜌(ℎ) 6 3

for all ℎ. Since 𝜌(ℎ) is nonnegative, multiplication by
2𝜌(ℎ) can be implemented with a bitshift, not requiring
branches.

We did not implement this size reduction: instead, we
concentrated on another size reduction opportunity that
we shall describe now.

5.2 Bipartite Table
That second table size reduction method uses a bipartite
table. Additionally, it takes advantage of the fact that,
for small nonnegative 𝑔, the exact value of 5𝑔 takes less
space than an accurate enough approximation of 𝑓(ℎ)
(for instance, 5𝑔 fits on 64 bits for 𝑔 6 27). In the case of a
typical implementation of comparison between binary64
and decimal64 numbers, the bipartite table uses only
800 bytes of storage.

Most of the overhead in arithmetic operations for
the bipartite table method can be hidden on current
processors through increased instruction-level parallelism.
The reduction in table size also helps decreasing the
probability of cache misses.

Recall that we suppose 𝑔 = 𝜙(ℎ), so that 𝑔 and ℎ lie be-
tween bounds 𝑔(2)min, 𝑔

(2)
max, resp. ℎ(2)min, ℎ

(2)
max deduced from
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Proposition 4. For some integer “splitting factor” 𝛾 > 0
and 𝜖 = ±1, write

𝑔 = 𝜙(ℎ) = 𝜖(𝛾𝑞 − 𝑟), 𝑞 =

⌈︂
𝜖𝑔

𝛾

⌉︂
, (11)

so that

𝑓(ℎ) =

(︂
5𝛾𝑞

5𝑟

)︂𝜖
· 2−ℎ−𝑤.

Typically, 𝛾 will be chosen as a power of 2, but other
values can occasionally be useful. With these definitions,
we have 0 6 𝑟 6 𝛾 − 1, and 𝑞 lies between⌈︃

𝜖
𝑔
(2)
min

𝛾

⌉︃
and

⌈︃
𝜖
𝑔
(2)
max

𝛾

⌉︃
(the order of the bounds depends on 𝜖). The integer 5𝑟 fits
on 𝜓(𝑟) + 1 bits, where 𝜓 is the function defined by (10).

Instead of tabulating 𝑓(ℎ) directly, we will use two
tables: one containing the most significant bits of 5𝛾𝑞

roughly to the precision dictated by the worst cases
computed in Section 4, and the other containing the exact
value 5𝑟 for 0 6 𝑟 6 𝛾 − 1. We denote by 𝜆1 and 𝜆2 the
respective precisions (entry sizes in bits) of these tables.
Based on these ranges and precisions, we assume

𝜆1 > log2(𝜂
−1)− 𝑤 + 3, (12)

𝜆2 > 𝜓(𝛾 − 1) + 1. (13)

In addition, it is natural to suppose 𝜆1 larger than or close
to 𝜆2: otherwise, an algorithm using two approximate
tables will likely be more efficient.

In practice, 𝜆2 will typically be one of the available
machine word widths, while, for reasons that should
become clear later, 𝜆1 will be chosen slightly smaller
than a word size. For each pair of basic IEEE formats,
Tables 6 and 7 provide values of 𝜖, 𝛾, 𝜆1, 𝜆2 (and other
parameters whose definition follows later) suitable for
typical processors. The suggested values were chosen
by optimizing either the table size or the number of
elementary multiplications in the algorithm, with or
without the constraint that 𝛾 be a power of two.

It will prove convenient to store the table entries left-
aligned, in a fashion similar to floating-point significands.
Thus, we set

𝜃1(𝑞) = 5𝛾𝑞·2𝜆1−1−𝜓(𝛾𝑞),

𝜃2(𝑟) = 5𝑟 ·2𝜆2−1−𝜓(𝑟),

where the power-of-two factors provide for the desired
alignment. One can check that

2𝜆1−1 6 𝜃1(𝑞) < 2𝜆1 , 2𝜆2−1 6 𝜃2(𝑟) < 2𝜆2 (14)

for all ℎ.
The value 𝑓(ℎ) now decomposes as

𝑓(ℎ) =
5𝑔

2ℎ+𝑤
=

(︂
𝜃1(𝑞)

𝜃2(𝑟)

)︂𝜖
2𝜖·(𝜆2−𝜆1)−𝜎(ℎ)−𝑤 (15)

where
𝜎(ℎ) = ℎ− 𝜖 ·

(︀
𝜓(𝛾𝑞)− 𝜓(𝑟)

)︀
. (16)

Equations (10) and (16) imply that

ℎ− 𝑔 log2 5− 1 < 𝜎(ℎ) < ℎ− 𝑔 log2 5 + 1.

As we also have ℎ log5 2 − 1 6 𝑔 = 𝜙(ℎ) < ℎ log5 2 by
definition of 𝜙, it follows that

0 6 𝜎(ℎ) 6 3. (17)

Now let 𝜏 > −1 be an integer. In practice, we will
usually choose 𝜏 = 0, sometimes 𝜏 = −1, and 𝜏 > 0 for
highly unusual floating-point formats only. A reader who
is not interested in such corner cases may simply assume
𝜏 = 0. Define⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δ = 𝜃1(𝑞) · 𝑛 · 2𝜏−𝑝
′
10

− 𝜃2(𝑟) ·𝑚 · 2𝜏+𝜆1−𝜆2+𝜎(ℎ)−𝑝2−1, 𝜖 = +1,

Δ = 𝜃1(𝑞) ·𝑚 · 2𝜏−𝑝2−1

− 𝜃2(𝑟) · 𝑛 · 2𝜏+𝜆1−𝜆2−𝜎(ℎ)−𝑝′10 , 𝜖 = −1.

The relations |𝑥2| > |𝑥10|, |𝑥2| = |𝑥10|, and |𝑥2| < |𝑥10|
hold respectively when 𝜖Δ < 0, Δ = 0, and 𝜖Δ > 0.

Proposition 7. Unless 𝑥2 = 𝑥10, we have |Δ| > 2𝜏+1.

Proof: Assume 𝑥2 ̸= 𝑥10. For 𝜖 = +1, and using (15),
the definition of Δ rewrites as

Δ = 𝜃2(𝑟)𝑛 2
𝜏+𝜆1−𝜆2+𝜎(ℎ)−𝑝2−1

(︁
𝑓(ℎ)− 𝑚

𝑛

)︁
.

Since 𝑓(ℎ) = 𝑚/𝑛 is equivalent to 𝑥2 = 𝑥10, we know by
Proposition 5 that |𝑓(ℎ) −𝑚/𝑛| > 𝜂. Together with the
bounds (3), (12), (14), and (17), this implies

log2 |Δ| > (𝜆2 − 1) + (𝑝′10 − 1) + 𝜏 + 𝜆1 − 𝜆2 − 𝑝2 − 1

+ log2 𝜂

= (𝜆1 + log2 𝜂 + 𝑤 − 3) + 𝜏 + 1 > 𝜏 + 1.

Similarly, for 𝜖 = −1, we have

Δ = −𝜃1(𝑞)𝑛 2𝜏−𝑝2−1
(︁
𝑓(ℎ)− 𝑚

𝑛

)︁
,

so that

log2 |Δ| > (𝜆1 − 1) + (𝑝′10 − 1) + 𝜏 − 𝑝2 − 1 + log2 𝜂

> 𝜏 + 1

when Δ ̸= 0.
As already explained, the values of 𝜃2(𝑟) are integers

and can be tabulated exactly. In contrast, only an approx-
imation of 𝜃1(𝑞) can be stored. We represent these values
as ⌈𝜃1(𝑞)⌉, hence replacing Δ by the easy-to-compute⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δ̃ =
⌊︀
⌈𝜃1(𝑞)⌉ · 𝑛 · 2𝜏−𝑝

′
10
⌋︀

−
⌊︀
𝜃2(𝑟) ·𝑚 · 2𝜏+𝜆1−𝜆2+𝜎(ℎ)−𝑝2−1

⌋︀
, 𝜖 = +1,

Δ̃ =
⌊︀
⌈𝜃1(𝑞)⌉ ·𝑚 · 2𝜏−𝑝2−1

⌋︀
−

⌊︀
𝜃2(𝑟) · 𝑛 · 2𝜏+𝜆1−𝜆2−𝜎(ℎ)−𝑝′10

⌋︀
, 𝜖 = −1.

Proposition 7 is in principle enough to compare 𝑥2 with
𝑥10, using a criterion similar to that from Proposition 6.
Yet additional properties hold that allow for a more
efficient final decision step.



8

Proposition 8. Assume 𝑔 = 𝜙(ℎ), and let Δ̃ be the signed
integer defined above. For 𝜏 > 0, the following equivalences
hold:

Δ < 0 ⇐⇒ Δ̃ 6 −2𝜏 ,

Δ = 0 ⇐⇒ 0 6 Δ̃ 6 2𝜏 ,

Δ > 0 ⇐⇒ Δ̃ > 2𝜏+1.

Furthermore, if 𝜏 ∈ {−1, 0} and

𝜆1 − 𝜆2 + 𝜏 >

{︃
𝑝2 + 1, 𝜖 = +1,

𝑝′10 + 3, 𝜖 = −1,
(18)

then Δ and Δ̃ have the same sign (in particular, Δ̃ = 0 if and
only if Δ = 0).

Proof: Write the definition of Δ̃ as

Δ̃ =
⌊︀
⌈𝜃1(𝑞)⌉𝑋

⌋︀
−
⌊︀
𝜃2(𝑟)𝑋

′⌋︀
where the expressions of 𝑋 and 𝑋 ′ depend on 𝜖, and
define 𝛿tbl, 𝛿rnd, 𝛿′rnd by

⌈𝜃1(𝑞)⌉ = 𝜃1(𝑞) + 𝛿tbl, ⌊⌈𝜃1(𝑞)⌉𝑋⌋ = ⌈𝜃1(𝑞)⌉𝑋 + 𝛿rnd,

⌊𝜃2(𝑟)𝑋 ′⌋ = 𝜃2(𝑟)𝑋
′ + 𝛿′rnd.

The 𝛿’s then satisfy

0 6 𝛿tbl < 1, −1 < 𝛿rnd, 𝛿
′
rnd 6 0.

For both possible values of 𝜖, we have1 0 6 𝑋 6 2𝜏 and
hence

−1 < Δ̃−Δ = 𝑋𝛿tbl + 𝛿rnd − 𝛿′rnd < 2𝜏 + 1.

If Δ < 0, Proposition 7 implies that

Δ̃ < −2𝜏+1 + 2𝜏 + 1 = −2𝜏 + 1.

It follows that Δ̃ 6 −⌊2𝜏⌋ since Δ̃ is an integer. By the
same reasoning, Δ > 0 implies Δ̃ > ⌊2𝜏+1⌋, and Δ = 0
implies 0 6 Δ̃ 6 ⌈2𝜏⌉. This proves the first claim.

Now assume that (18) holds. In this case, we have
𝛿′rnd = 0, so that −1 < Δ̃ −Δ < 2𝜏 . The upper bounds
on Δ̃ become Δ̃ 6 −⌊2𝜏⌋− 1 for Δ < 0 and Δ̃ 6 ⌈2𝜏⌉− 1
for Δ = 0. When −1 6 𝜏 6 0, these estimates respectively
imply Δ̃ < 0 and Δ̃ = 0, while Δ̃ > ⌊2𝜏+1⌋ implies Δ > 0.
The second claim follows.

The conclusion Δ̃ = 0 = Δ when 𝑥2 = 𝑥10 for certain
parameter choices means that there is no error in the
approximate computation of Δ in these cases. Specifically,
the tabulation error 𝛿tbl and the rounding error 𝛿rnd cancel
out, thanks to our choice to tabulate the ceiling of 𝜃1(𝑞)
(and not, say, the floor).

We now describe in some detail the algorithm resulting
from Proposition 8, in the case 𝜖 = +1. In particular, we
will determine integer datatypes on which all steps can be
performed without overflow, and arrange the powers of
two in the expression of Δ̃ in such a way that computing

1. Actually 0 6 𝑋 6 2𝜏−1 for 𝜖 = −1: this dissymmetry is related to
our choice of always expressing the lower bound on Δ in terms of 𝜂
rather than using a lower bound on 𝑓(ℎ)−1 − 𝑛/𝑚 when 𝜖 = −1.

the floor functions comes down to dropping the least
significant words of multiple-word integers.

Let 𝑊 : N → N denote a function satisfying 𝑊 (𝑘) > 𝑘
for all 𝑘. In practice, 𝑊 (𝑘) will typically be the width of
the smallest “machine word” that holds at least 𝑘 bits.
We further require that (for 𝜖 = +1):

𝑊 (𝑝′10)− 𝑝′10 > 1, (19)
𝑊 (𝜆1)− 𝜆1 >𝑊 (𝜆2)− 𝜆2 + 𝜏 + 3, (20)

𝑊 (𝑝2)− 𝑝2 +𝑊 (𝜆2)− 𝜆2 >𝑊 (𝜆1)− 𝜆1 − 𝜏 + 1. (21)

These assumptions are all very mild in view of the
IEEE-754-2008 Standard. Indeed, for all IEEE interchange
formats (including binary16 and formats wider than
64 bits), the space taken up by the exponent and sign
leaves us with at least 5 bits of headroom if we choose
for 𝑊 (𝑝2), resp. 𝑊 (𝑝′10) the word width of the format.
Even if we force 𝑊 (𝜆2) = 𝜆2 and 𝜏 = 0, this always
allows for a choice of 𝜆1, 𝜆2 and 𝑊 (𝜆2) satisfying (12),
(13) and (19)–(21).

Denote 𝑥+ = max(𝑥, 0) and 𝑥− = max(−𝑥, 0), so that
𝑥 = 𝑥+ − 𝑥−.

Algorithm 2. Step 2, second method, 𝜖 = +1.
1 Compute 𝑞 and 𝑟 as defined in (11), with 𝜖 = +1.

Compute 𝜎(ℎ) using Proposition 2.
2 Read ⌈𝜃1(𝑞)⌉ from the table, storing it on a 𝑊 (𝜆1)-bit

(multiple-)word.
3 Compute

𝐴 =
⌊︀
(⌈𝜃1(𝑞)⌉ · 2𝜏

+

) · (𝑛2𝑊 (𝑝′10)−𝑝
′
10−𝜏

−
) · 2−𝑊 (𝑝′10)

⌋︀
by (constant) left shifts followed by a 𝑊 (𝜆1)-by-
𝑊 (𝑝′10)-bit multiplication, dropping the least signifi-
cant word(s) of the result that correspond to 𝑊 (𝑝′10)
bits.

4 Compute

𝐵 =
⌊︀
𝜃2(𝑟) · (𝑚2𝜎(ℎ)+𝜔) · 2𝑊 (𝜆1)−𝑊 (𝜆2)−𝑊 (𝑝2)

⌋︀
where the constant 𝜔 is given by

𝜔 =𝑊 (𝑝2)− 𝑝2 +𝑊 (𝜆2)− 𝜆2 −𝑊 (𝜆1) + 𝜆1 + 𝜏 − 1

in a similar way, using a 𝑊 (𝜆2)-by-𝑊 (𝑝2)-bit multi-
plication.

5 Compute the difference Δ̃ = 𝐴− 𝐵 as a 𝑊 (𝜆1)-bit
signed integer.

6 Compute Δ′ = ⌊Δ̃2−𝜏−1⌋2𝜏+1 by masking the 𝜏 + 1
least significant bits of Δ̃.

7 Return ⎧⎪⎨⎪⎩
“𝑥10 < 𝑥2” if Δ′ < 0,

“𝑥10 = 𝑥2” if Δ′ = 0,

“𝑥10 > 𝑥2” if Δ′ > 0.

Proposition 9. When either 𝜏 > 0 or 𝜏 = −1 and (18) holds,
Algorithm 2 correctly decides the ordering between 𝑥2 and 𝑥10.

Proof: Hypotheses (19) and (21), combined with the
inequalities 𝜎(ℎ) > 0 and 𝜏 > −1, imply that the shifts
in Steps 3 and 4 are left shifts. They can be performed
without overflow on unsigned words of respective widths
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𝑊 (𝜆1), 𝑊 (𝑝′10) and 𝑊 (𝑝2) since 𝑊 (𝜆1)− 𝜆1 > 𝜏 +1 and
𝑊 (𝑝2) − 𝑝2 > 𝜔 + 3, both by (20). The same inequality
implies that the (positive) integers 𝐴 and 𝐵 both fit on
𝑊 (𝜆1)−1 bits, so that their difference can be computed by
a subtraction on 𝑊 (𝜆1) bits. The quantity 𝐴−𝐵 computed
in Step 5 agrees with the previous definition of Δ̃, and
Δ′ has the same sign as Δ̃, hence Proposition 8 implies
that the relation returned in Step 7 is correct.

When 𝜏 ∈ {−1, 0} and (18) holds, no low-order bits
are dropped in Step 4, and Step 6 can be omitted
(that is, replaced by Δ′ := Δ̃). Also observe that a
version of Step 7 returning −1, 0 or 1 according to the
comparison result can be implemented without branching,
using bitwise operations on the individual words which
make up the representation of Δ′ in two’s complement
encoding.

The algorithm for 𝜖 = −1 is completely similar, except
that (19)–(21) become

𝑊 (𝑝2)− 𝑝2 > 2, (19’)
𝑊 (𝜆1)− 𝜆1 >𝑊 (𝜆2)− 𝜆2 + 𝜏 + 1, (20’)

𝑊 (𝑝′10)− 𝑝′10 +𝑊 (𝜆2)− 𝜆2 >𝑊 (𝜆1)− 𝜆1 − 𝜏 + 3, (21’)

and 𝐴 and 𝐵 are computed as

𝐴 =
⌊︀
(⌈𝜃1(𝑞)⌉ · 2𝜏

+

) · (𝑚2𝑊 (𝑝2)−𝑝2−𝜏−−1) · 2−𝑊 (𝑝2)
⌋︀

𝐵 =
⌊︀
𝜃2(𝑟) · (𝑛2𝜔−𝜎(ℎ)) · 2𝑊 (𝜆1)−𝑊 (𝜆2)−𝑊 (𝑝′10)

⌋︀
,

with

𝜔 =𝑊 (𝑝′10)− 𝑝′10 +𝑊 (𝜆2)− 𝜆2 −𝑊 (𝜆1) + 𝜆1 + 𝜏,

respectively using a 𝑊 (𝜆1)-by-𝑊 (𝑝2)-bit and a 𝑊 (𝜆2)-
by-𝑊 (𝑝′10) multiplication.

Tables 6 and 7 suggest parameter choices for compar-
isons in basic IEEE formats. (We only claim that these are
reasonable choices that satisfy all conditions, not that they
are optimal for any well-defined metric.) Observe that,
though it has the same overall structure, the algorithm
presented in [2] is not strictly speaking a special case
of Algorithm 2, as the definition of the bipartite table
(cf. (11)) is slightly different.

6 AN EQUALITY TEST

Besides deciding the two possible inequalities, the direct
and bipartite methods described in the previous sections
are able to determine cases when 𝑥2 is equal to 𝑥10.
However, when it comes to solely determine such equality
cases additional properties lead to a simpler and faster
algorithm.

The condition 𝑥2 = 𝑥10 is equivalent to

𝑚 · 2ℎ+𝑤 = 𝑛 · 5𝑔, (22)

and thus implies certain divisibility relations between 𝑚,
𝑛, 5±𝑔 and 2±ℎ±𝑤. We now describe an algorithm that
takes advantage of these relations to decide (22) using
only binary shifts and multiplications on no more than
max(𝑝′10 + 2, 𝑝2 + 1) bits.

Proposition 10. Assume 𝑥2 = 𝑥10. Then, we have

𝑔eqmin 6 𝑔 6 𝑔eqmax, −𝑝′10 + 1 6 ℎ 6 𝑝2.

where

𝑔eqmin = −⌊𝑝10(1 + log5 2)⌋, 𝑔eqmax = ⌊𝑝2 log5 2⌋.

Additionally,
∙ if 𝑔 > 0, then 5𝑔 divides 𝑚, otherwise 5−𝑔 divides 𝑀10

(and 𝑛);
∙ if ℎ > −𝑤, then 2ℎ+𝑤 divides 𝑛, otherwise 2−(ℎ+𝑤)

divides 𝑚.

Proof: First observe that 𝑔 must be equal to 𝜙(ℎ) by
Proposition 1, so 𝑔 > 0 if and only if ℎ > 0. The divisibility
properties follow immediately from the coprimality of
2 and 5.

When 𝑔 > 0, they imply 5𝑔 6 𝑚 < 2𝑝2 − 1, whence
𝑔 < 𝑝2 log5 2. Additionally, 2−ℎ−𝑤𝑛 is an integer. Since
ℎ > 0, it follows that 2ℎ 6 2−𝑤𝑛 < 2𝑝

′
10−𝑤 and hence

ℎ 6 𝑝′10 − 𝑤 − 1 = 𝑝2.
If now 𝑔 < 0, then 5−𝑔 divides 𝑚 = 2𝜈𝑀10 and hence

divides 𝑀10, while 2−ℎ divides 2𝑤𝑚. Since 𝑀10 < 10𝑝10

and 2𝑤𝑚 < 2𝑝2+𝑤, we have −𝑔 < 𝑝10 log5 10 and −ℎ <
𝑝10 log2 10 < 𝑝′10.

These properties translate into Algorithm 3 below.
Recall that 𝑥+ = max(𝑥, 0) and 𝑥− = 𝑥+ − 𝑥. (Branch-
less algorithms exist to compute 𝑥+ and 𝑥− [1].) Let
𝑝 = max(𝑝′10 + 2, 𝑝2 + 1).

Algorithm 3. Equality test.
1 If not 𝑔eqmin 6 𝑔 6 𝑔eqmax then return false.
2 Set 𝑢 = (𝑤 + ℎ)− and 𝑣 = (𝑤 + ℎ)+.
3 Using right shifts, compute

𝑚1 = ⌊2−𝑢𝑚⌋, 𝑛1 = ⌊2−𝑣𝑛⌋.

4 Using left shifts, compute 𝑚2 = 2𝑢𝑚1 and 𝑛2 = 2𝑣𝑛1.
5 Read 5𝑔

+

and 5𝑔
−

from a table (or compute them).
6 Compute 𝑚3 = 5𝑔

−
𝑚1 with a 𝑝′10 × 𝑝2 → 𝑝 bit mul-

tiplication (meaning that the result can be anything
if the product does not fit on 𝑝 bits).

7 Compute 𝑛3 = 5𝑔
+

𝑛1 with a 𝑝2 × 𝑝′10 → 𝑝 bit
multiplication.

8 Return (𝑚2 = 𝑚)∧(𝑛2 = 𝑛)∧(𝑔 = 𝜙(ℎ))∧(𝑛3 = 𝑚3).

As a matter of course, the algorithm can return false
as soon as any of the conditions from Step 8 is known
unsatisfied.

Proposition 11. Algorithm 3 correctly decides whether 𝑥2 =
𝑥10.

Proof: First observe that, if any of the conditions
𝑔 = 𝜙(ℎ), 𝑔eqmin 6 𝑔 6 𝑔eqmax, 𝑚2 = 𝑚 and 𝑛2 = 𝑛 is vio-
lated, then 𝑥2 ̸= 𝑥10 by Propositions 1 and 10. Indeed,
𝑥2 = 𝑥10 implies 𝑚2 = 𝑚 and 𝑛2 = 𝑛 due to the
divisibility conditions of Proposition 10. In all these cases,
the algorithm correctly returns false. In particular, no table
access occurs unless 𝑔 lies between 𝑔eqmin and 𝑔eqmax.

Now assume that these four conditions hold. In par-
ticular, we have 𝑚1 = 2−𝑢𝑚 as 𝑚2 = 𝑚, and similarly
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𝑛1 = 2−𝑣𝑛. The bounds on 𝑔 imply that 5𝑔
+

fits on 𝑝2
bits and 5𝑔

−
fits on 𝑝′10 bits. If 𝑔 and 𝑤 + ℎ are both

nonnegative, then 𝑚3 = 𝑚, and we have

5𝑔
+

𝑛1 = 5𝜙(ℎ)2−(𝑤+ℎ)𝑛 < 2−𝑤+𝑝′10 = 2𝑝2+1 6 2𝑝.

By the same reasoning, if 𝑔, 𝑤 + ℎ 6 0, then 𝑛3 = 𝑛 and

5−𝑔2𝑤+ℎ𝑚 < 5 · 2𝑝
′
10−1 < 2𝑝.

If now 𝑔 > 0 with ℎ 6 −𝑤, then 𝑚3 = 𝑚1 and

5𝑔𝑛 < 2ℎ+𝑝
′
10 6 2−𝑤+𝑝′10 = 2𝑝2+1 6 2𝑝.

Similarly, for 𝑔 6 0, −ℎ 6 𝑤, we have

5−𝑔𝑚 < 5 · 2−ℎ+𝑝2 6 5 · 2𝑤+𝑝2 6 2𝑝.

In all four cases,

𝑚3 = 5𝑔
−
2−𝑢𝑚 and 𝑛3 = 5𝑔

+

2−𝑣𝑛

are computed without overflow. Therefore

𝑚3

𝑛3
=
𝑚 · 2(ℎ+𝑤)+−(ℎ+𝑤)−

𝑛 · 5𝑔+−𝑔− =
𝑚 · 2ℎ+𝑤

𝑛 · 5𝑔

and 𝑥2 = 𝑥10 if and only if 𝑚3 = 𝑛3, by (22).

7 EXPERIMENTAL RESULTS

Both the method based on direct tabulation of 𝑓(ℎ)
presented in Section 5.1 and the bipartite table method
presented in Section 5.2 have been implemented and
thoroughly tested in the case of binary64–decimal64
comparisons. Our implementation is available at

http://hal.archives-ouvertes.fr/hal-01021928/

along with tables of worst and bad cases for the approx-
imation problem from Section 4.

To the extent possible when using decimal floating-
point numbers, we gave priority to portability over
performance in the main source code. It is written in
plain C, using the decimal floating-point type support
offered by the compiler we are using, gcc 4.9.0 [10]. No
particular effort at optimization was made. For instance,
multiple-word operations are implemented in portable C,
with no use of hardware operations such as 64×64 → 128
bit multiplication except for that automatically inserted by
the compiler. Nevertheless, we also provide an alternative
implementation of the bipartite table method featuring
some manual optimization. This optimized version is
written using gcc extensions and compiler intrinsics
besides plain C.

Testing was done using test vectors that extensively
cover all floating-point input classes, such as normal num-
bers, subnormals, Not-A-Numbers, zeros, infinities, for
both the binary input 𝑥2 and the decimal input 𝑥10. The
test vectors also include worst cases (i.e., inputs reaching
the minimal value of 𝑑ℎ(𝑚,𝑛)) for each admissible value
of ℎ, as well as many next to worst cases computed
using the method described in the Appendix of [3]. The
rationale behind exercising not only the worst-case for

each ℎ but also other bad cases is that an implementation
might work for the worst-case input just by chance,
whereas chances decrease rapidly for a larger number of
difficult test cases. The test vectors were finally completed
with a large set of random inputs that fully exercise
all possible values of the normalization parameter 𝜈 (cf.
Section 3) as well as both the first step succeeding or the
second step being necessary.

Both implemented methods have been compared for
performance to the naïve comparison method where one
of the inputs is converted to the radix of the other input.
These experimental results are reported in Table 5. In the
last two rows, “easy” cases are cases where the first step
of our algorithm succeeds, while “hard” cases refer to
those for which running the second step is necessary.

The code is executed on a system equipped with a quad-
core Intel Core i5-3320M processor clocked at 2.6 GHz,
running Linux 3.14 in 64 bit mode. The comparison
functions are compiled at optimization level 3, with
the -march=native -msse4 flags set. The timing mea-
surements were done using the Read-Time-Step-Counter
instruction after pipeline serialization. The serialization
and function call overhead was subtracted off after timing
an empty function. Measurements were taken once the
caches were preheated by previous comparison function
calls, the results of which were discarded. The indicated
numbers are in cycles and given for the minimum,
maximum and (except in cases involving special inputs)
average value that was observed. Cycle counts larger
than about 370 were discarded, and the corresponding
tests run again, in order not to account for delays likely
due to exceptional external events.

As can be seen from Table 5, our implementations
of both the Direct Method presented in Section 5.1
and the Bipartite Table Method described in Section 5.2
outperform both naïve methods in most cases.

The (unoptimized) Direct Method is slightly faster
than the (unoptimized) Bipartite Table Method. This
is mainly due to the more computationally expensive
second step of the Bipartite Table Method. The difference
in performance probably does not justify the use of an
about 30 times larger table for the direct method. We do
not have experimental data for the Direct Method using
the table size reduction technique through tabulation of
𝐹 (𝑔) (cf. Section 5.1).

8 CONCLUSION

Though not foreseen in the IEEE 754-2008 Standard,
exact comparisons between floating-point formats of
different radices would enrich the current floating-point
environment and enhance the safety and provability of
numerical software.

This paper has investigated the feasibility of such com-
parisons. A simple test has been presented that eliminates
most of the comparison inputs. For the remaining cases,
two algorithms were proposed, a more direct method
and a technique based on a bipartite table. For instance,
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Naïve method Naïve method Direct method Bipartite table Bipartite table
converting 𝑥10 converting 𝑥2 method method (optimized

to binary64 to decimal64 described in described in implementation)
(incorrect) (incorrect) Section 5.1 Section 5.2

min/avg/max min/avg/max min/avg/max min/avg/max min/avg/max

Special cases (±0, NaNs, Inf) 22/–/150 36/–/193 15/–/94 30/–/116 21/–/81
𝑥2, 𝑥10 of opposite sign 41/107/186 60/144/196 17/37/82 33/55/105 27/38/83
𝑥2 normal, same sign, “easy” cases 34/107/186 65/150/197 30/64/128 46/83/151 28/50/104
𝑥2 subnormal, same sign, “easy” cases 42/106/172 108/142/193 158/169/195 172/183/211 30/35/80
𝑥2 normal, same sign, “hard” cases 54/84/176 54/100/196 45/63/143 67/86/192 36/48/126
𝑥2 subnormal, same sign, “hard” cases 73/105/173 96/125/196 171/183/195 196/208/213 43/57/102

TABLE 5
Timings (in cycles) for both presented methods and for two naïve methods.

in the case of binary64–decimal64, the bipartite table uses
only 800 bytes of table space. It is still feasible in the case
of binary128–decimal128 comparisons.

Both methods have been proven, implemented (in the
case of binary64–decimal64 comparisons) and thoroughly
tested. They outperform the naïve comparison technique
consisting in conversion of one of the inputs to the
respectively other format. Furthermore, they always
return a correct answer, which is not the case of the
naïve technique.

Since the algorithmic problems of exact binary to
decimal comparison and correct rounding of binary to
decimal conversions (and vice versa) are similar, future
investigations should also consider the possible reuse of
tables for both problems. Finally, one should mention
that considerable additional work is required in order
to enable mixed-radix comparisons in the case when the
decimal floating-point number is stored in dense-packed-
decimal representation.
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b32/d64 b32/d128 b64/d64 b64/d128 b128/d64 b128/d128

𝑊 (𝑝2) 32 32 64 64 128 128
𝑊 (𝑝′10) 64 128 64 128 64 128

𝛾 = 2𝑘 , optimizing multiplication count
𝜖 −1 −1 +1 −1 +1 +1
𝛾 8 8 8 8 8 8

range of 𝑞 −4, 8 −4, 10 −42, 39 −38, 45 −622, 617 −624, 617
min 𝜆1 satisfying (12) 86 145 117 178 190 242
min 𝜆2 satisfying (13) 17 17 17 17 17 17

chosen 𝜆1,𝑊 (𝜆1) 95, 96 159, 160 125, 128 191, 192 190, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 32, 32 32, 32 32, 32 32, 32 32, 32 32, 32

𝜏 0 0 0 0 −1 0

Step 6 of Algo. 2 can be omitted ! ! ! ! ! !
total table size in bytes 188 332 1344 2048 29792 39776

32-bit muls 5 9 10 16 16 36

𝛾 = 2𝑘 , optimizing table size
𝜖 −1 −1 +1 −1 −1 +1
𝛾 8 16 32 32 64 64

range of 𝑞 −4, 8 −2, 5 −10, 10 −9, 12 −77, 78 −78, 78
min 𝜆1 satisfying (12) 86 145 117 178 190 242
min 𝜆2 satisfying (13) 17 35 72 72 147 147

chosen 𝜆1,𝑊 (𝜆1) 95, 96 159, 160 125, 128 191, 192 191, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 32, 32 64, 64 96, 96 96, 96 160, 160 160, 160

𝜏 0 0 0 0 0 0

Step 6 of Algo. 2 can be omitted ! % % % % %
total table size in bytes 188 288 720 912 5024 6304

32-bit muls 5 13 14 24 34 52

any 𝛾, optimizing multiplication count
𝜖 −1 −1 +1 −1 +1 +1
𝛾 13 13 14 14 14 14

range of 𝑞 −2, 5 −2, 6 −24, 22 −22, 26 −355, 353 −357, 353
min 𝜆1 satisfying (12) 86 145 117 178 190 242
min 𝜆2 satisfying (13) 28 28 31 31 31 31

chosen 𝜆1,𝑊 (𝜆1) 95, 96 159, 160 125, 128 191, 192 190, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 32, 32 32, 32 32, 32 32, 32 32, 32 32, 32

𝜏 0 0 0 0 −1 0

Step 6 of Algo. 2 can be omitted ! ! ! ! ! !
total table size in bytes 148 232 808 1232 17072 22808

32-bit muls 5 9 10 16 16 36

any 𝛾, optimizing table size
𝜖 −1 −1 +1 +1 −1 +1
𝛾 13 13 28 28 69 83

range of 𝑞 −2, 5 −2, 6 −12, 11 −12, 11 −71, 73 −60, 60
min 𝜆1 satisfying (12) 86 145 117 178 190 242
min 𝜆2 satisfying (13) 28 28 63 63 158 191

chosen 𝜆1,𝑊 (𝜆1) 95, 96 159, 160 125, 128 189, 192 191, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 32, 32 32, 32 64, 64 64, 64 160, 160 192, 192

𝜏 0 0 0 0 0 0

Step 6 of Algo. 2 can be omitted ! ! ! ! % %
total table size in bytes 148 232 608 800 4860 5864

32-bit muls 5 9 12 28 34 56

TABLE 6
Suggested parameters for Algorithm 2 on a 32-bit machine.
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b32/d64 b32/d128 b64/d64 b64/d128 b128/d64 b128/d128

𝑊 (𝑝2) 64 64 64 64 128 128
𝑊 (𝑝′10) 64 128 64 128 64 128

𝛾 = 2𝑘 , optimizing multiplication count
𝜖 +1 −1 +1 −1 +1 +1
𝛾 16 16 16 16 16 16

range of 𝑞 −3, 3 −2, 5 −21, 20 −19, 23 −311, 309 −312, 309
min 𝜆1 satisfying (12) 86 145 117 178 190 242
min 𝜆2 satisfying (13) 35 35 35 35 35 35

chosen 𝜆1,𝑊 (𝜆1) 125, 128 191, 192 125, 128 191, 192 190, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 64, 64 64, 64 64, 64 64, 64 64, 64 64, 64

𝜏 0 0 0 0 −1 0

Step 6 of Algo. 2 can be omitted ! ! ! ! ! !
total table size in bytes 240 320 800 1160 15032 20032

64-bit muls 3 5 3 5 5 10

𝛾 = 2𝑘 , optimizing table size
𝜖 +1 −1 +1 −1 −1 +1
𝛾 16 16 16 32 64 64

range of 𝑞 −3, 3 −2, 5 −21, 20 −9, 12 −77, 78 −78, 78
min 𝜆1 satisfying (12) 86 145 117 178 190 242
min 𝜆2 satisfying (13) 35 35 35 72 147 147

chosen 𝜆1,𝑊 (𝜆1) 125, 128 191, 192 125, 128 191, 192 191, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 64, 64 64, 64 64, 64 128, 128 192, 192 192, 192

𝜏 0 0 0 0 0 0

Step 6 of Algo. 2 can be omitted ! ! ! % % %
total table size in bytes 240 320 800 1040 5280 6560

64-bit muls 3 5 3 7 9 14

any 𝛾, optimizing multiplication count
𝜖 +1 −1 +1 −1 +1 +1
𝛾 13 20 28 28 28 28

range of 𝑞 −4, 3 −1, 4 −12, 11 −11, 13 −177, 177 −178, 177
min 𝜆1 satisfying (12) 86 145 117 178 190 242
min 𝜆2 satisfying (13) 28 45 63 63 63 63

chosen 𝜆1,𝑊 (𝜆1) 125, 128 191, 192 125, 128 191, 192 190, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 64, 64 64, 64 64, 64 64, 64 64, 64 64, 64

𝜏 0 0 0 0 −1 0

Step 6 of Algo. 2 can be omitted ! ! ! ! ! !
total table size in bytes 232 304 608 824 8744 11616

64-bit muls 3 5 3 5 5 10

any 𝛾, optimizing table size
𝜖 +1 −1 +1 +1 −1 +1
𝛾 13 20 28 28 82 83

range of 𝑞 −4, 3 −1, 4 −12, 11 −12, 11 −60, 61 −60, 60
min 𝜆1 satisfying (12) 86 145 117 178 190 242
min 𝜆2 satisfying (13) 28 45 63 63 189 191

chosen 𝜆1,𝑊 (𝜆1) 125, 128 191, 192 125, 128 189, 192 191, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 64, 64 64, 64 64, 64 64, 64 192, 192 192, 192

𝜏 0 0 0 0 0 0

Step 6 of Algo. 2 can be omitted ! ! ! ! % %
total table size in bytes 232 304 608 800 4896 5864

64-bit muls 3 5 3 7 9 14

TABLE 7
Suggested parameters for Algorithm 2 on a 64-bit machine.


