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Abstract
This work deals with the numerical and symbolic-numerical computation of the monodromy
of complex algebraic curves, with special emphasis on correct error control in presence of
close singularities. The speaker’s approach uses Puiseux expansions above singularities and
analytic continuation along the edges of a minimal Euclidean spanning tree connecting them.
This work is a first step toward an effective version of the Abel-Jacobi theorem relating an
algebraic curve to its Jacobian variety.

1. Motivation and Problem Statement

1.1. The Abel-Jacobi Theorem. An irreducible polynomial

(1) F = Y d + ad−1(X)Y d−1 + · · ·+ a0(X) ∈ K[X,Y ] (d ≥ 1)

over some subfield K of the complex numbers defines a plane affine algebraic curve

C = {(x, y) ∈ C2 : F (x, y) = 0},
along with a ramified covering π : C → C of the complex plane and a compact Riemann surface Ĉ
canonically associated1 to the curve C. We seek to compute the monodromy group defined by this
curve. The speaker’s long-term goal, and the origin of his interest in this problem, is an effective
version of the Abel-Jacobi theorem. Applications include the algebraic case of the Risch algorithm
for indefinite integration, differential Galois group computations, and the study of some solution
families of partial differential equations arising in physics, such as Korteweg-de Vries equations.

One concrete way to introduce this theorem is the following: a compact Riemann surface such
as Ĉ admits meromorphic functions. These necessarily have as many zeros as poles, when counted
with multiplicities. Conversely, one may ask whether there exists a meromorphic function on C
with prescribed zeros and poles satisfying the previous condition. For example, if the curve has
genus zero, its set of meromorphic functions is C(X), so the answer is always positive.

Turning to the general case, recall that a divisor of C is a formal sum
∑

P nP P, nP ∈ Z of points
of the curve. The degree of a divisor is the sum of its coefficients. A divisor that is the sum of
the zeros of a meromorphic function (with multiplicities, and counting poles as zeros with negative
multiplicity) is called a function divisor. Function divisors form a subgroup, denoted Prin(C), of
the (Abelian) group Div0(C) of degree zero divisors. So the former question amounts to decide
whether a given divisor is a function divisor.

1Denote by S the set of critical points of π, as defined in §1.2. Then C′ = C \ (S × C) is a (connected) finitely
punctured compact Riemann surface and π|C′ is an unramified covering of C \S. “Stuffing the holes” (including that

at infinity), we obtain Ĉ and a map π̂ : Ĉ → P1C extending π|C′ .
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Figure 1. The canonical basis of homology, for a curve of genus 2.

As a complex manifold, Ĉ admits holomorphic differential one-forms (a.k.a. differentials of the
first kind or differentials without poles). These can be integrated along cycles, and the value of
such an integral depends only on the homology class of the cycle and the cohomology class of the
differential. Let (ω1, . . . , ωg) be a basis of the cohomology space H1(C) (“a basis of the holomorphic
differentials”) and let (γ1, . . . , γ2g) be the canonical basis of H1(C), made of (the classes of) the
loops depicted on Figure 1. Integrals of (Z-combinations of) the ωi along (Z-combinations of) the
γj form a lattice Γ ⊂ C. Now we are in position to state the theorem.

Theorem 1. The Abel-Jacobi map

Div0(C)/Prin(C) → Jac(C) = Cg/Γ
P 7→

(∫ P
O ω1, . . . ,

∫ P
O ωg

)
is a group isomorphism.

To decide whether a divisor is a function divisor using this theorem, we have to compute the
period lattice Γ above. Using an algorithm due to C. and M. Tretkoff, this can be reduced to
computing the monodromy of the curve [5].

1.2. Monodromy. Above all but finitely many points a of the x-plane, the fiber π−1(a) has
cardinality d. In that case, a is called a regular point. Points that are not regular (that is, such that
the univariate polynomial F (a, Y ) has multiple roots) are said to be critical. If a is a regular point,
the implicit function theorem states that there exist d analytic functions y1(x), . . . , yd(x) such that
{yi(a)} = π−1(a) and F (x, yi(x)) = 0 for all i. Each of them parametrizes one sheet of the covering
in a neighborhood of a.

Consider a path γ : [0, 1] → C \ S, and choose one analytic solution of equation (1) above
γ(0). One may continue analytically this solution along γ, yielding an analytic function defined
in a neighborhood of γ(1) which is still a solution of the equation. Now take γ to be a loop with
basepoint a: then analytic continuation along γ—or any other path homotopic to γ—induces a
permutation of the fiber π−1(a). The action of the fundamental group π1(C \ S, a) thus defined on
π−1(a) is called the monodromy of C with basepoint a. Up to conjugation, it does not depend on
the choice of the basepoint.

The monodromy action of a loop enclosing exactly one critical point c is called the local mon-
odromy around c. The whole monodromy may be represented by the local monodromy around each
critical point with respect to a common basepoint. This is the expected output of an algorithm for
monodromy computation.
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2. Certified monodromy computation

2.1. General strategy. Many methods for monodromy computation are based upon its definition
by means of analytic continuation. The idea is to choose a broken line path homotopic to a bunch
of loops encompassing one critical point each; then to compute (in a way to be precised) the fiber
above each vertex; and finally to connect the fibers above adjacent vertices, that is, to identify
values corresponding to the same solution branch.

For example, the Maple monodromy function, by M. van Hoeij and B. Deconinck [5], connects
the fibers heuristically using first-order Taylor expansions, adapting the step length depending on
the observed precision. M. van Hoeij and M. Rybowicz developed another version which provides
correct error control using interval arithmetic, but it is much slower. Another idea, studied among
others by D.V. and G.V. Chudnovsky [1, 2, 4], is to compute a differential equation satisfied by the
algebraic function y(x). This allows for fast high-precision evaluation by binary splitting [3, 10],
however, according to the speaker, the size of the differential equation compared to that of the
algebraic one and the conversion cost can be prohibitive. Moreover, in most cases, the high precision
is not really needed.

The strategy exposed here fits into this “compute-fibers-and-connect” pattern. Following the
discussion above, in a regular point, the equation admits d (convergent) formal power series solutions
y(x). One can show that their convergence radius is at least the distance from a to the nearest
critical point. We use every other vertex (disks on Figure 2) of the path as an expansion point, above
which we compute Taylor expansions of the d solutions. Between two successive expansion points,
in the intersection of the convergence disks, lie connection points. Fibers above connection points
are computed numerically and compared with the values assumed there by expansions above nearby
expansion points to make the connection. However, when the curve has singularities close to each
other, the path needs to go between them at some point, which requires high orders of truncation.
Existing methods based on this sole idea tend to require unacceptable expansion orders or even
to become inaccurate in those cases. To solve this problem, the method presented here allows
expansion points to be singular points.

2.2. Puiseux expansions above critical points. Indeed, it is still possible to give formal so-
lutions of the equation (corresponding to asymptotic expansions of “actual” algebraic functions)
in the neighborhood of a critical point c, in the form of Puiseux series with nonnegative support.
(Recall that F is monic.) More precisely, there exist s classes

yi(x) =
∞∑
k=0

yi,k (x− c)k/ei , e1 + · · ·+ es = d

of ei Puiseux series with conjugate algebraic coefficients satisfying F (x, yi(x)) = 0. The ei are
called the ramification indices.

Puiseux expansions above critical points are computed using the Newton-Puiseux algorithm as
improved by D. Duval [6]. Then the local monodromy can be read “for free” on the Puiseux
expansions. Indeed, (almost) like power series exapansions above ordinary points, they have a
sector of convergence extending up to the next critical point. This means that, once we choose
a determination for the ei-th root functions, each Puiseux expansion defines an analytic function
in a slit disk centered in c. The process of analytic continuation around c permutes cyclically
the branches corresponding to conjugate Puiseux expansions. As in ordinary points, numerical
evaluation inside the sector of convergence allows to connect the fibers. We can also “sidestep” the
critical point by evaluating the expansion in two connection points.
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Example. Take F (X,Y ) = (Y 3−X)((Y − 1)2−X)(Y − 2−X2) +X2Y 5. Since F (0, y) = 0⇒ y ∈
{0, 1, 2} while degY F = 6, the point x0 = 0 is critical. The Puiseux expansions of F above 0 are:

Y1,1 = 2− 3X2 − 9
2
X3 + · · ·

Y2,k = 1 +X1/2 + (−1)kX3/2 + · · · , k ∈ {1, 2}

Y3,k = jkX1/3 +
1
6
X3 +

5
12
jkX10/3 + · · · , k ∈ {1, 2, 3}, j3 = 1.

Denoting solutions by their indices above, the local monodromy is thus(
(1, 1) (1, 2) (1, 3)

)(
(2, 1) (2, 2)

)
∈ S6.

All this still applies if a happens to be an ordinary point: then the Puiseux expansions are usual
power series expansions, the ramification indices are all 1 and the local monodromy is the identity
permutation.

2.3. Error control for numerical connection. In a connection point x1, Smith’s theorem on
isolation of complex roots of univariate polynomials [9] allows to compute small disks D(ỹ(x1), ρ)
containing each exactly one root of F (x1, Y ). From the minimal distance between two of these
disks, we get a truncation order n in the corresponding expansion points that ensures the nearest
ỹ(x1) to

∑n
k=0 yk (x1 − x0)k/e is indeed that belonging to the same branch.

Proposition 1. Let y(x1) =
∑∞

k=0 yk (x1−x0)k/e be a Puiseux expansion of a solution of (1) above
x0. Let ρ be the distance from x0 to the next critical point and let M be a bound on the values of
y on the disk D(x0, ρ). Then for any x1 ∈ D(x0, ρ), the tail of the Puiseux expansion satisfies

(2) n ≥
lg M(x0)

ε + lg 1
1−β

lg 1
β

− 1 ⇒
∣∣∣ ∞∑
k=n

yk (x1 − x0)k/e
∣∣∣ ≤ ε

where β =
(
|x1−x0|

ρ

)1/e
.

A suitable M may be computed from Mignotte bounds on the roots of univariate polynomials [7].
Similar bounds are used in other parts of the algorithm that require numerical values for roots of
polynomials.

3. Efficiency issues

3.1. Global monodromy and choice of the path. Since we can obtain the local monodromy in
any critical point simply by looking at the Puiseux expansions, all we need to compute the global
monodromy is to express the local monodromies using the same base point. The complexity of the
computation depends on the path we choose to do this connection.

First, we can bound the total number of continuation steps as follows. Suppose the base point
a is given. Compute a minimal spanning tree for the usual Euclidean distance of the set formed
by a and the critical points. Use the critical points and the middles of the edges as expansion
points, and put one connection point near each end of each edge (figure 2). From the definition
of the tree, expansions above the middle of an edge are convergent up to its ends, so this is
sufficient for continuation along the edge. Continuation along several successive edges is performed
by “sidestepping” the vertices as mentioned in §2.2. Now the monodromy matrix around c w.r.t.
the common basepoint a is the conjugate of that w.r.t. a connection point e lying near c by the
matrix connecting the fibers π−1(a) and π−1(e)—which we obtain by analytic continuation along
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Figure 2. Choice of the path along which to perform analytic continuation.
Disks  are expansion points, squares � are connection points, dotted circles are
convergence circles of Puiseux expansions. In bold, the path giving the local mon-
odromy around cj with basepoint a.

the path from a to e in the spanning tree. Thus, if p ≤ D2 (where D is the total degree of F ) is the
number of critical points, 2p+ 1 expansions and 2p evaluations are enough to compute the global
monodromy.

However, it turns out that minimizing the number of steps is not the best way to go. Indeed,
bigger steps and steps reaching near singularities require high truncation orders. To decrease the
sum of truncation orders along the path, we keep β away from 1 in Proposition 1, introducing
additional steps (along the edges of the tree) as needed. Experiments show that setting β = 1/2
is a good compromise. Enforcing this value, Equation (2) becomes n ≥ lg(M/ε), and we get the
following theorem.

Theorem 2. Let p be the number of critical points of equation (1); and let Lmin, Lmax be the
smallest, resp. the largest distance between two of them. There is an algorithm that computes the
monodromy defined by (1) using O(p lg(Lmax/Lmin)) expansion and connection points, all expansion
orders being bounded by lg(M/ε), with the notations of Proposition 1.

Note that M and ε depend on the behaviour of y(x) in each expansion point.

3.2. Towards an efficient algorithm for Puiseux series computation. The main cost of the
algorithm outlined above comes from the manipulation of Puiseux expansions above critical points.
The Newton-Puiseux algorithm and its variant mentioned above compute them by performing
changes of variable in the algebraic equation, guided by the form of the so-called Newton polygon
of the equation, until they manage to reduce the expansion to the regular case. In order not to
“miss” the multiplicities of roots of polynomials that determine the ramification type, one uses exact
arithmetic on algebraic numbers. This is slow, due to the growth of the coefficients and the degrees
of algebraic extensions involved. Even the numerical evaluation to connect fibers is costly, because
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large cancellations can occur. However, the speaker does not wish to give up expansions above
singularities: not only do they provide the local monodromy and a way to sidestep critical points,
but they also give useful information for error control in other parts of the effective Abel-Jacobi
theorem.

To overcome this, he suggests a hybrid numeric-modular algorithm. The idea is to compute
the coefficients of the expansion numerically, while performing in parallel an exact computation
modulo some suitable prime. Indeed, only the Newton polygons and the multiplicities of roots
of characteristic polynomials defined by their edges really need to be exact: in other words, if all
Newton polygons appearing in the course of the Newton-Puiseux algorithm are known, then it is
possible to compute expansions with approximate coefficients but correct ramification by numerical
methods. The difficult part is to ensure that the structure of the modular computation correctly
mirrors that of the complex one. Work is in progress to devise an algorithm that outputs a “good”
prime for which no degeneracy happens (at least with high probability), and to control the accuracy
of the numerical part of the algorithm. A prototype heuristic implementation of these ideas in Maple
already gives unexpectedly good results.

Other questions currently under investigation include understanding more precisely the good
performance of the numeric-modular strategy and studying the complexity of the overall algorithm.
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