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Abstract

For purposes of numerical implementation of mathematical functions, one is interested in
finding low degree polynomials with floating-point coefficients approximating a given func-
tion to a certain precision. The basic idea of the method presented here is to look for a
constrained approximant interpolating the target function at the same points as the Cheby-
shev polynomial of given degree; which reduces to solving the shortest vector problem in
a lattice. This method is simple, fast, flexible, and although heuristic, it usually gives so-
lutions very close to the actual optimum. This is joint work with Serge Torres, and part
of the speaker’s PhD research, conducted under the direction of Nicolas Brisebarre and
Jean-Michel Muller.

The general framework of this work—and the research subject of the Arenaire project—is the
problem of certified numerical computation with mathematical functions. This includes hardware
(“FPU”), fixed-precision software (“libm”) and arbitrary precision software (“bigfloat”) imple-
mentation of elementary functions as well as correct rounding for more complex operators, such as
linear algebra operations. In all these cases, to implement a function f with inexact arithmetic,
one may replace it by a simpler function f̃—here simple means easier to evaluate—, which in turn
is computed using the available primitives, controlling the round-off error.

Here we are concerned with the choice of f̃ in the case where f is a real function we wish to
evaluate in a fixed precision floating-point format using additions and multiplications. So we let
f : [a, b]→ R (with −∞ < a < b <∞) be a continuous real function, and we seek to approximate
f by a polynomial f̃ . (If the domain of the function we’re trying to implement is too large, we
may split it or use various range reduction technique to obtain a “small enough” segment.) Many
usual functions come by definition with natural simple approximations, such as truncated Taylor
series for analytic functions. However, they are usually inefficient: for instance, one needs 7 terms
of the Taylor expansion of exp(1/2 + t) to approximate exp on [−1, 2] with (absolute) error not
exceeding 0.01, while there exists a polynomial of degree 4 achieving the same accuracy. So it is
natural to look for polynomials of minimal degrees providing an approximation of a function to a
given precision. We focus on absolute error; however, most of what follows adapts to the case of
relative error.

Definition 1. Let f : [a, b] → R be a continuous function and let n ∈ N. A polynomial f̃ ∈ R[x]
of degree ≤ n minimizing the maximum absolute error

‖f̃ − f‖∞ = sup
x∈[a,b]

|f̃(x)− f(x)|.
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is called a minimax polynomial (or a best approximation polynomial in the sense of Chebyshev) of
degree n of f .

Polynomial approximation has been studied from the mathematical point of view since the 19th
century. The basic result about minimax approximants is the classical theorem of Chebyshev.

Theorem 1. A continuous function f : [a, b] → R has a unique minimax polynomial. This poly-
nomial can be characterised as the unique f̃ ∈ R[x] of degree ≤ n such that there exists ε = ±1 and
n+ 2 points x0 < · · · < xn+1 satisfying

∀j, f̃(xj)− f(xj) = ε(−1)j‖f̃ − f‖∞.

In words, a polynomial f̃ is the minimax polynomial of degree n of f if and only if the error function
f̃ − f reaches is maximal absolute value n+ 2 times, with alternating signs.

E. Rémès [9] gave an algorithm to compute (arbitrarily good approximations of) the minimax
polynomial with quadratic convergence. But this is not the end of the story. Indeed, what we
are interested in is approximation by polynomial with floating-point coefficients. Recall a (binary,
fixed-precision) floating-point number is a number of the form m · 2e, where the mantissa m is
an integer with a fixed number t of bits. Usually the exponent e is also constrained to lie in a
certain range, but we will ignore that here. The Ieee 754 standard defines several widely used
floating-point formats, including “single precision” (t = 24) and “double precision” (t = 53). So
our true problem is the following.

Problem 1. Given the function f , a degree bound n and a mantissa size t (and maybe a base b, if
we wish to consider floating-point numbers is bases other than 2), find a polynomial f̃ ∈ 2−∞Z[x]
of degree ≤ n, with floating-point coefficients of the specified format, minimizing ‖f̃ − f‖∞.

Notice that unicity is no more ensured. The naive approach of rounding each coefficient of the
real minimax polynomial to obtain a floating-point polynomial may yield poor results.

Example. Take f : [0, 1] → R, x 7→ lg(1 + 2−x) and look for a polynomial approximation of degree
≤ 6 with single-precision coefficients. Then the real minimax corresponds to an error of 8.3 · 10−10.
Rounding each of its coefficients to the nearest single-precision Ieee floating-point number gives an
error of 119·10−10, while the optimal polynomial approximation in this format achieves 10.06·10−10.

Similar issues have already been tackled by D. Kodek [7] in the context of signal processing, but
his approach is limited to small mantissas (typically t < 10) and low degree (n < 20) polynomials.
W. Kahan also claims to have an efficient method; however his work is not available.

The first general method for determining the optimal floating-point minimax polynomial is due
to N. Brisebarre, J.-M. Muller and A. Tisserand [3]. Their idea is the following: when looking for a
polynomial of degree n, first guess the exponents e0, . . . , en of the coefficients and an approximate
value ε of ‖f̃ −f‖∞. Then let f̃(x) = m0 ·2e0 + · · ·+mn ·2enxn and search for (m0, . . . ,mn) ∈ Zn+1

minimizing ‖f̃ − f‖∞ under the additional constraints

(1) −ε ≤ f̃(xi)− f(xi) ≤ ε for “many” xi

using P. Feautrier’s integer linear programming tool PIP [4]. Repeat until the guesses are correct.
This method provides certified results and is flexible, in the sense that it allows to find minimax

polynomials with various additional constraints. However, it runs in exponential time, and it is
quite sensitive to the choice of ε and the xi: if ε is underestimated, there will be no solution, but if
it is too much overestimated, the search time becomes unacceptable. The new method presented
here is a fast (polynomial time) heuristic that aimed to provide good starting points in order to
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speed up the method of Brisebarre et al. Actually the polynomial it gives turned out to be better
than expected, and often good enough to be used directly.

We make the same simplification as above, namely to suppose the values of the exponents have
been guessed. Starting from the exponents of the rounded real minimax is usually a good choice. So
the setting is the same as above, excepted that we replace the (1) by a “approximate interpolation
constraints” for n+ 1 points x0, . . . , xn:

(2)

f̃(x0)
...

f̃(xn)

 = m0

2e0

...
2e0

 + · · ·+mn

2enxn
0

...
2enxn

n

 '
f(x0)

...
f(xn)

 .
This “discretisation” step is what makes the rigorous analysis of the method difficult (and the
reason we call it heuristic). Let bi = (2eixi

0, . . . , 2
eixi

n) and f = (f(x0), . . . , f(xn)). Equation (2)
rewrites as

(3) m0b0 + . . .mnbn ' f

which can be understood as: find the vector closest to f in the lattice Zb0 + . . .Zbn ⊂ Rn+1. Let
us recall the classical closest lattice vector problem (CVP).

Problem 2. Let Γ ⊂ Rn be a lattice (that is, a discrete subgroup) of rank k ≤ n, and let ‖·‖ be a
norm on Rn. Given a basis (b0, . . . ,bk) of Γ and a vector x ∈ Rn, find y∗ ∈ Γ minimizing ‖y∗−x‖.

The Euclidean CVP is known to be NP-hard to solve exactly [10] or even within a subpolynomial
(in n) factor, and not NP-hard to approximate to a factor

√
n/ log n [5], still no algorithm is known

that gives a polynomial approximation factor. On the practical side, it can be solved exactly using
a (super-exponential) algorithm due to Kannan [6], but building on the celebrated LLL lattice
reduction algorithm [8], Babai [1] gave a polynomial algorithm that finds a lattice vector y “pretty
close” to a given x, namely such that ‖y−x‖2 ≤ 2n/2‖y∗−x‖2. This is the algorithm we use. This
exponential approximation factor may seem large, but (as does LLL) Babai’s algorithm usually
gives better results as one would expect looking at the bound.

The choice of the norm implied by the ' sign in Equation (3) is somewhat arbitrary. What we
really want is a uniform approximation; however, choosing the Euclidean norm allows us to use
Babai’s algorithm, and this is what we do. (If necessary, we may refine the result by looking for a
closer vector w.r.t. ‖·‖∞ among those we get if we perturb the y we found by a linear combination
with small coefficients of the “pretty short” vectors of the LLL-reduced basis of Γ.)

So the algorithm is as follows. We are given the function f , a degree n and a floating-point
precision t, and we are looking for a floating-point polynomial f̃ (with this degree and this precision)
close to f . We first compute (an approximation of) the real minimax f∗ = a∗0+· · ·+a∗nxn by Rémès’
algorithm. This gives us a first guess ei = 1 − t + |lg |a∗i || for the values of the exponents of f̃ .
The critical step is to choose the interpolation points xi in order to avoid Runge’s phenomenon.
According to the intuition that f̃ will be close to f∗, and in view of Theorem 1, we use the n + 1
points x such that f∗(x) = f(x). We finally solve the closest vector problem 3 by Babai’s algorithm
as explained above. Of course, the guessed exponents may not be optimal. So we use the following
heuristic: if one of the computed coefficients ai has a mantissa mi that doesn’t fit on t bits (which
suggests our choice of exponents was wrong), we repeat the process after shifting ei by |lgmi| (that
is, replacing aa

i st by ai in the formula used to guess the exponents) to take into account the order of
magnitude of ai. There is no proof that this converges; but it did after only two or three iterations
on all the examples the speaker tried, even when the initial exponents were far off.
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(a) Real minimax (b) First try

In practice, the running time of the algorithm is essentially that of Rémès’ algorithm (which is
called only once even if one wishes, say, to try several floating-point formats).
Example. Finally let us look at an example that shows how the above method can be tweaked to solve more complex
cases with additional constraints. John Harrison (Intel) asked the speaker’s team for a degree 9 polynomial approx-
imating f(x) = (2x − 1)/x for x ∈ [−1/16, 1/16] to a precision ε . 2−74 ' 5.30 · 10−23. The coefficients were to
be extended double precision (t = 64), except for the constant one, which was to be searched for as the sum of two
“extended doubles”.

Rémès’ algorithm gives ‖f∗8 − f‖∞ < 40.1 · 10−23 and ‖f∗9 − f‖∞ < 0.08 · 10−23 for the minimax polynomials of
degree 8 and 9 respectively, so degree 9 should indeed be a good choice for the target precision. It also provides
interpolation points (Figure (a)). Applying the strategy above unchanged, we get f̃ s.t. ‖f̃ − f‖∞ < 5.32 · 10−23: so
the challenge was well chosen! (In comparison, rounding f∗9 gives ‖f∗rnd−f‖∞ ' 40.35·10−23.) But look at Figure (b):

f̃ does not respect the interpolation constraint! Indeed, we observe that the slope of f̃ in 0 is very constrained –
a good polynomial f̃ should satisfy ã1 ' (lg 2)2/2. To take this into account, we look for g̃ = b0 + b2x

2 + . . . b9x
9

approximating g(x) = f(x)− a1x. Adapting our strategy to enforce g1 = 0, we finally get ‖g̃ − g‖∞ < 4.45 · 10−23.

Although it worked on the last example above, Rémès’ algorithm is not sufficient in general to
compute real constrained minimax polynomials (such as g∗ here), so a better algorithm is needed
to generalize their use. Work is also in progress to extend the method exposed here to other types
of approximants, such as rational polynomials and sums of cosines.
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