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Abstract

We describe an algorithm that takes as input a complex sequence (un) given by a linear recur-
rence relation with polynomial coefficients along with initial values, and outputs a simple explicit
upper bound (vn) such that |un| ≤ vn for all n. Generically, the bound is tight, in the sense
that its asymptotic behaviour matches that of un. We discuss applications to the evaluation of
power series with guaranteed precision.

Key words: Algorithm, bounds, Cauchy-Kovalevskaya majorant, certified evaluation,
holonomic functions

1. Introduction

A sequence u ∈ CN is polynomially recursive, or P-recursive (over Q) if it satisfies a
non-trivial linear recurrence relation

p[s](n)un+s + · · ·+ p[1](n)un+1 + p[0](n)un = 0 (1)

with polynomial coefficients p[k] ∈ Q[n]. Likewise, an analytic function (or a formal
power series) u is differentially finite, or D-finite, if it is solution to a non-trivial linear
differential equation

p[r](z)u(r)(z) + · · ·+ p[1](z)u′(z) + p[0](z)u(z) = 0, p[k] ∈ Q[z]. (2)

The coefficients of a D-finite power series form a P-recursive sequence, and conversely,
the generating series of a P-recursive sequence is D-finite. Numerous sequences arising in
combinatorics are P-recursive, while many elementary and special functions are D-finite.

Starting with the works of Stanley (1980), Lipshitz (1989) and Zeilberger (1990), D-
finiteness relations have gradually been recognized as good data structures for symbolic
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computation with these analytic objects. This means that many operations of interest
may be performed on the implicit representation of sequences and functions provided by
an equation such as (1), (2) along with sufficiently many initial values (see Salvy and
Zimmermann, 1994; Stanley, 1999). In recent years, significant research efforts have been
aimed at developing and improving algorithms operating on this data structure.

In this article, we describe an algorithm for computing upper bounds on P-recursive
sequences of complex numbers. Specifically, we prove the following theorem (whose vo-
cabulary is made more precise in the sequel).

Theorem 1. Given as input a reversible recurrence relation of the form (1) with ratio-
nal coefficients along with initial values defining a sequence (un) ∈ Q[i]N, Algorithm 5
computes A ∈ R+, κ ∈ Q, α ∈ Q̄∗+ (the set of positive algebraic numbers) and φ such
that

∀n ∈ N, |un| ≤ An!κ αn φ(n); (3)
with φ(n) = eo(n). Moreover, for generic initial values, κ and α are tight.

Asymptotic expansions of P-recursive sequences are a well-studied subject (see, e.g.,
Odlyzko, 1995; Flajolet and Sedgewick, 2009) and their computation has been largely
automated (Wimp and Zeilberger, 1985; Tournier, 1987; Flajolet et al., 1991; Zeilberger,
2008). While an asymptotic estimate gives a precise indication on the behaviour of the
sequence for large values of its index, it cannot in general be used to get an estimate for
a specific value. Our result lets one obtain explicit bounds valid for any term, while the
tightness of the bound with respect to the asymptotic behaviour implies that the bound
is not straying too far away from the actual value. These bounds may be useful both
inside rigorous numerical algorithms for problems such as D-finite function evaluation
or numerical integration, or as “standalone” results to be reported to the user of a
computer algebra system. The problem of accuracy control in several settings covering the
evaluation of D-finite functions has been considered by many authors (see in particular
Hoefkens, 2001; Makino and Berz, 2003; Neher, 2003; Rihm, 1994; van der Hoeven, 2003,
2007). We review previous work on this problem in some more detail in §5.2. Our main
contribution from this viewpoint is to give bounds that are asymptotically tight.

Example 2. To get a sense of the kind of bounds we can compute, consider the following
examples. For readability, the constants appearing in the polynomial parts of the bounds
are replaced by low-precision approximations.
(a) Suppose we want to bound

In =
∫ ∞

0
tne−t

2−1/t dt

as a function of n ∈ N. From the recurrence relation 2In+3 = (n + 2)In+1 + In and
the initial conditions I0, I1, I2 ≤ 1/5, Algorithm 5 finds that

In ≤ n!1/22−n/2 · (0.26n+ 0.76)
(
n+ 19

19

)
.

In fact, In ∼ n!1/22−n/2−3/4(π/n)3/4 as n → ∞, so that with the notations of
Theorem 1, κ = 1/2, α = 2−1/2 are indeed recovered by our algorithm. (This example
and the following one are adapted from Wimp and Zeilberger (1985, Examples 2.1
and 2.3), who illustrate the computation of asymptotic expansions by the Birkhoff-
Trjitzinsky method.)
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(b) The number tn of involutions of {1, . . . , n} satisfies the recurrence relation

t(n+ 2) = (n+ 1)t(n) + t(n+ 1), t(0) = t(1) = 1,

and tn ∼ (8π)−1/4n!1/2e
√
n−1/4n−1/4 as n → ∞ (see Knuth, 1997, §5.1.4). Assume

that we wish to bound the probability that a permutation chosen uniformly at ran-
dom is an involution: the same algorithm leads to 1

t(n)
n!
≤ (0.90n+ 2.69)n!−1/2 [zn] exp 1

1− z
= O(n1/4 n!−1/2 e2

√
n).

Compare (Flajolet and Sedgewick, 2009, Example VIII.5). Notice that, in addition
to the parameters α and κ of Theorem 1, the subexponential growth type eO(

√
n) is

preserved. However, our algorithm is not designed to preserve the constant in this
O(·) term.

(c) One of the fastest ways to compute high-precision approximations of π resorts to the
following formula due to Chudnovsky and Chudnovsky (1988, p. 389):

∞∑
k=0

tk = 6403203/2

12π
where tk = (−1)k(6k)!(13591409 + 545140134k)

(3k)!(k!)36403203k .

Using the method of §4.2 on the obvious first order recurrence relation satisfied by
(tk), our algorithm leads to∣∣∣∣∣

∞∑
k=n

tk

∣∣∣∣∣ ≤ 106(2.3n3 + 13.6n2 + 25n+ 13.6)αn

where α = 1
151931373056000 ' 0.66 · 10−14. We see that each term of the series gives

about 14 more correct decimal digits of π, and we can easily deduce a suitable
truncation order to compute π to any given precision.

(d) Similarly, from the differential equation

z Si′′′(z) + 2 Si′′(z) + z Si′(z) = 0, Si(0) = 0,Si′(0) = 1

the result of our algorithm shows that the Sine integral special function may be
approximated with absolute error less than 10−100 on the disk |z| ≤ 1 by truncating
its Taylor series at the origin to the order 74.

Outline. Our approach is summarized in Figure 1. Consider a solution (un) of Equa-
tion (1). Classical methods involving Newton polygons and characteristic equations allow
to extract from the recurrence relation some information on the asymptotic behaviours
that (un) may assume. We use these methods to “factor out” the main asymptotic be-
haviour, thus reducing the computation of a bound on |un| to that of a bound on a
sequence of subexponential growth. This sequence is solution to a “normalized recur-
rence” computed in that step. Using the correspondence between P-recursive sequences
and D-finite functions, we encode this sequence by a differential equation satisfied by its
generating function (§2). Then we adapt the method of Cauchy-Kovalevskaya majorant
series to bound this generating function. The key point here, in view of the requirement
of asymptotic tightness, is to find a majorant whose disk of convergence extends to the
nearest singularity of the equation, thus avoiding the loss of an exponential factor usually

1 We use [zn]f to denote the coefficient of zn in the power series f , see the end of §1 for notations.
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Figure 1. Outline of our bound computation method. Solid arrows represent computation steps;
dashed arrows indicate proof steps without counterpart in the algorithm.

associated with the majorant series method (§3). We show how to deduce several kinds
of explicit bounds on un and

∑
n unz

n from the asymptotic behaviour and the majorant
series (§4). Finally, we introduce our implementation of the algorithms of this article and
we briefly discuss their use in the context of high-precision numerical evaluation (§5).

Terminology and Notations. We let Q[n]〈S〉 be the algebra of recurrence operators with
polynomial coefficients, viewed as noncommutative polynomials over Q[n] in the shift
operator S : CN → CN, (un)n∈N 7→ (un+1)n∈N. Note that the sequences we consider are
indexed by the nonnegative integers. Similarly, ∂ stands for the differentiation of formal
power series, and Q[z]〈∂〉 for the algebra of linear differential operators with polynomial
coefficients, written with ∂ on the right. Noncommutative monomials are written and
represented in memory with the coefficient on the left and the power of the main variable
S or ∂ on the right.

For any formal power series u ∈ C[[z]], we denote by un (or sometimes by [zn]u) the
coefficient of zn in u. Following van der Hoeven (2003), we also write

u;n =
∞∑
k=n

ukz
k, un; =

n−1∑
k=0

ukz
k.

To avoid ambiguity, most other indexed names are written using bracketed superscripts,
like p[0] in Equation (1). We use the notations of Graham et al. (1989) for the rising and
falling factorials, namely xn =

∏n−1
k=0(x+ k) and xn =

∏n−1
k=0(x− k).

In the statement of algorithms, we employ expressions such as “set x ≥ v”, to mean
“compute an approximation of v by excess (without any precise accuracy requirement)
and assign it to x”.
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S

n

slope −κ = −1/2

S

n

ũn = ψnun
(n+ q)pψn+q = ψn

un+3+un+2+nun+1

+(n+1)un=0
(n+6)(n+4)ũn+6+2(n+4)(n+1)ũn+4

−(n2−n−5)ũn+2−(n+1)ũn=0

Figure 2. Newton polygons of recurrence operators, before and after normalization.

2. Factorial and Exponential behaviour

In this section, we collect classical results on the asymptotics of P-recursive sequences.
These will both allow us to make precise statements about the tightness of the bounds
we compute and serve as a guide to organise the computation in order to meet these
requirements. Moreover, we state effective versions of some parts of the results, that
constitute the first steps of our algorithm.

2.1. The Perron-Kreuser theorem

A linear recurrence relation
p[s](n)un+s + · · ·+ p[1](n)un+1 + p[0](n)un = 0, (4)

or the corresponding operator
∑
p[k]Sk, is called nonsingular when p[s](n) 6= 0 for all

n ∈ N. It is called reversible when p[0](n) 6= 0 for all n ∈ N.
Assume that the coefficients p[k](n), k = 0, . . . , s of (4) are sequences such that

p[k](n) ∼n→∞ ckn
dk for some ck ∈ C, dk ∈ Z (for instance, they are rational func-

tions of n). If (un) is a solution of (4) with un+1/un ∼n→∞ λnκ then for the recurrence
equation to hold asymptotically, the maximum value of dk + kκ for k = 0, . . . , s must be
reached at least twice, so that the corresponding terms can cancel. This means that −κ
must be among the slopes of the edges of the Newton polygon of the equation.

The Newton polygon of (4) is the upper convex hull of the points (k, dk) ∈ R2,
k = 0, . . . , s (see Figure 2). If e is an edge of the polygon, we denote by −κ(e) its slope.
If (t, dt) is the leftmost point of e, then the algebraic equation

χe(λ) =
∑

(k,dk)∈e

ckλ
k−t = 0 (5)

is called the characteristic equation of e. Observe that the degrees of the characteristic
equations sum up to the order s of the recurrence.

Theorem 3 (Poincaré, Perron, Kreuser). For each edge e of the Newton polygon of (4),
let λe,1, λe,2, . . . be the solutions of the characteristic equation χe, counted with multi-
plicities.
(a) If for each e, the moduli |λe,1| , |λe,2| , . . . are pairwise distinct, then any solution

(un) that is not ultimately 0 satisfies un+1/un ∼n→∞ λe,in
κ(e) for some e and i.

(b) If moreover (4) is reversible, then it admits a basis of solutions (u[e,i])e,1≤i≤degχe
such that

u
[e,i]
n+1

u
[e,i]
n

∼n→∞ λe,in
κ(e). (6)
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(c) If there exists e and i 6= j such that |λe,i| = |λe,j |, results analogous to (a) and (b)
hold with the weaker conclusion

lim sup
n→∞

∣∣∣∣∣ u[e,i]
n

n!κ(e)

∣∣∣∣∣
1/n

= |λe,i| . (7)

Definition 4 (Normalized Recurrences). If all the edges have nonnegative slope (i.e., if
after dividing (4) by p[s], each coefficient tends to a finite limit as n→∞), the recurrence
is said to be of Poincaré type. In that case, we call it (and the corresponding operator)
normalized if the Newton polygon has a horizontal edge.

Thus a normalized recurrence is one whose “fastest growing” solution has purely ex-
ponential (as opposed to factorial) growth.

Item (a) above is known as Poincaré’s theorem (Poincaré, 1885); Items (b) and (c) are
Perron’s theorem (Perron, 1909a,b, 1921) in the case of recurrence relations of Poincaré
type, and the Perron-Kreuser theorem (Perron, 1910; Kreuser, 1914) in the general case.
In addition to the original works, we refer to Meschkowski (1959) and Guelfond (1963)
for accessible proofs of Poincaré’s and Perron’s theorems. Various further extensions and
refinements of these results are available, see, e.g., Schäfke (1965), Kooman and Tĳdeman
(1990), Pituk (1997), Buslaev and Buslaeva (2005), and the references therein.

In other words, the Perron-Kreuser theorem states that (4) admits a basis of solutions
of the form given by Theorem 3 in some neighborhood of infinity. The assumption that (4)
is reversible ensures that any solution near infinity extends to a solution defined on the
whole set of nonnegative integers.

2.2. Dominant Singularities

If P is a polynomial, we denote by ord(ζ, P ) the multiplicity of ζ as a root of P . We
call dominant roots of P those of highest multiplicity among its nonzero roots of smallest
modulus. We denote by δ(P ) and ordδ(P ) their modulus and multiplicity, respectively.
By convention, the dominant root of a monomial is ∞. We call dominant poles of a
rational function the dominant roots of its denominator; and dominant singularities of
a differential operator with polynomial coefficients the dominant roots of its leading
coefficient.

Besides standard symbolic manipulation routines, we assume that we have at our
disposal a few operations on real algebraic numbers represented using the notation δ(P ),
namely a function that decides, given P,Q ∈ Q[z], whether δ(P ) < δ(Q), δ(P ) = δ(Q) or
δ(P ) > δ(Q) and a procedure to compute arbitrarily good lower approximations of δ(P ).
The comparison can be based on a symbolic-numeric approach as in (Gourdon and Salvy,
1996). Modern polynomial root finders such as MPSolve (Bini and Fiorentino, 2000)
or those of major computer algebra systems provide the required numerical evaluation
features—and much more. Since we are interested only in δ(P ) as opposed to all roots of
P , we may also use a simple procedure based on Graeffe’s method (see, e.g., Schönhage,
1982, §14) if no general polynomial solver is available. More generally, most steps of
Algorithms 3 and 4 involving no precise accuracy requirement may be implemented
using interval arithmetic or floating-point arithmetic with careful rounding instead of
symbolically.
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Algorithm 1: Factorial and exponential behaviour
function Asympt(

∑s
k=0 b

[k](n)Sk ∈ Q[n]〈S〉)1

κ← maxs−1
k=0

deg b[k]−deg b[s]

s−k2

Pα ←
∑s
`=0 b

[s−`]
d+`κz

` where d = deg b[s]3
return (κ, Pα)4

Remark 5. Although we work over Q all along this paper for clarity, we expect that
most results adapt without difficulty to any “sufficiently effective” subfield of C. However,
the way to perform the basic operations we assume available in this section (as well as
the details of some algorithms, especially Algorithm 3 below) may differ.

2.3. Generic Growth of the Solutions

Let R ∈ Q[n]〈S〉 be a nonsingular reversible operator of order s. Then any solu-
tion of the recurrence relation R · u = 0 is uniquely determined by its initial values
(u0, . . . , us−1) ∈ Cs. Accordingly, we say that an assertion is true for a generic solu-
tion of R · u = 0, or for generic initial values, if it is true for any solution u such that
(u0, . . . , us−1) ∈ Cs \ V where V is a proper linear subspace of Cs.

Theorem 3 implies that the factorial and exponential asymptotic behaviour of the
“fastest growing” solutions is determined by the dominant singularities of R. We use
Algorithm 1 to extract this asymptotic behaviour, which is in fact that of a generic
solution of R · u = 0, as stated by Proposition 6 below.

Proposition 6 (Factorial and Exponential Growth). Write R as
∑s
k=0 b

[k](n)Sk ∈
Q[n]〈S〉 and assume b[k]b[s] 6= 0 for some k ∈ {0, . . . , s − 1}. Algorithm 1 computes
(κ, Pα) = Asympt(R) such that for any solution (un) of R · u = 0,

lim sup
n→∞

∣∣∣ un
n!κ
∣∣∣1/n ≤ α where α = 1

δ(Pα)
, (8)

with equality in the generic case.

Proof. The inequality follows from Theorem 3 since −κ is the slope of the rightmost
edge e of the Newton polygon of R and Pα is the reciprocal polynomial of χe. It remains
to show that equality holds for generic initial values. Let V = kerR ⊂ CN. Also by
Theorem 3, there exists u[1] ∈ V such that

lim sup
n→∞

∣∣∣∣∣u[1]
n

n!κ

∣∣∣∣∣
1/n

= α.

This can be extended to a basis u[1], . . . , u[s] of V . Let u =
∑
k λ

[k]u[k] ∈ V . By construc-
tion of κ and α, we have the inequality lim sup |un/n!κ|1/n ≤ α. Up to extraction of a
subsequence we can assume (i) that u[1]

n does not vanish, (ii) that |u[1]
n /n!κ|1/n → α and

(iii) that there exists β ≤ α such that |un/n!κ|1/n → β as n→∞. Then∣∣∣∣∣λ[1] + λ[2]u
[2]
n

u
[1]
n

+ · · ·+ λ[s] u
[s]
n

u
[1]
n

∣∣∣∣∣
1/n

→ β

α
,
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Algorithm 2: Recurrence to normalized differential equation
function RecToDiffeq(R =

∑s
k=0 b

[k]Sk ∈ Q[n]〈S〉)1
g ← Π/ gcd(b[s],Π) where Π =

∏s
k=1(n+ k)2 ∑s

k=0 ckjn
jSk ← g R . thus R =

∑s
k=0 ckjS

k(n− k)j3
expand

∑s
k=0

∑
j ckjz

s−k(θ − k)j as D =
∑r
k=0 a

[k]θk4
return D5

function Normalize(R ∈ Q[n]〈S〉, κ ∈ Q)6
p/q ← κ (in irreducible form, with (p, q) = (0, 1) if κ = 0)7

compute the symmetric product R̂ =
∑qs
k=0 b̂

[k](n)Sk of R and (n+ q)pSq − 18
. see, e.g., Stanley (1999, §6.4)
return RecToDiffeq(R̂)9

so that β = α unless
λ[2]u

[2]
n + · · ·+ λ[s]u

[s]
n

u
[1]
n

→ −λ[1],

which does not happen for generic λ[k]. 2

Accordingly tighter results hold if the assumptions of Theorem 3(b) are fulfilled.

2.4. Generating Function and Associated Differential Equation

Consider again a nonsingular recurrence operator R =
∑s
k=0 b

[k]Sk ∈ Q[n]〈S〉 (with
b[0], b[s] 6= 0). Using the Euler derivative θ = z d

dz , it is classical that the generating series
u(z) of u ∈ kerR cancels the associated differential operator D =

∑r
k=0 a

[k]θk ∈ Q[z]〈θ〉
computed by RecToDiffeq (Algorithm 2) 2 . Dividing out by a[r], this rewrites(

θr + a[r−1]

a[r] θr−1 + · · ·+ a[1]

a[r] θ + a[0]

a[r]

)
· u = 0. (9)

A point z0 ∈ C is a regular point of (9) if any solution u has polynomial growth u(z) =
1/ |z − z0|O(1) as z → z0 in a sector with vertex at z0. Regular points encompass ordinary
points, where the equation is nonsingular and thus has analytic solutions by Cauchy’s
theorem, and regular singular points. Fuchs’ criterion (see, e.g., Ince, 1956, §15.3) states
that 0 is a regular point if and only if for all k, the coefficient a[k]/a[r] of (9) is analytic
at 0, while z0 6= 0 is a regular point if and only if each a[k]/a[r] has a pole of order at
most r − k in z0. (This criterion still holds if the a[k]/a[r] are replaced by meromorphic
functions.)

Lemma 7. If R is normalized (Definition 4), then the origin is a regular point of D,
and the reciprocal polynomial of the leading term a[r] of D is the characteristic equation
of the horizontal edge of the Newton polygon of R.

2 Actually, the classical translation of recurrence operators to differential operators uses g = 1. The
multiplication by g in our version comes from our choice to use sequences indexed by N rather than Z.
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Proof. Using the notations of the function RecToDiffeq() in Algorithm 2, let d[k] =
deg b[k] for all k, and m = deg g. Thus r = maxsk=0 d

[k] + m. The leading term of
θjz−k as an operator in θ with Laurent polynomial coefficients is z−kθj , hence a[r](z) =∑s
k=0 ckrz

s−k. The condition that R is normalized translates into d[s] = maxs−1
k=0 d

[k],
that is, d[k] = d[s] = r −m for some k < s. It follows that a[r](0) = csr 6= 0, hence 0 is
a regular point by Fuchs’ criterion. Finally, if R is normalized and if e is the edge of its
Newton polygon such that κ(e) = 0, then the general expression

χe(λ) = λ−t
∑

d[k]+kκ(e)
=d[s]+sκ(e)

ak,d[k]λk

(where t is such that χe(0) 6= 0) simplifies to χe(λ) = λ−t
∑
d[k]=r ak,rλ

k. 2

In the general case, we normalize R by a change of unknown sequence preserving P-
recursiveness before we compute the associated differential equation. This is described in
the next proposition. Figure 2 gives an example of normalization of recurrence operators
and of its action on their Newton polygons.

Proposition 8. Let R ∈ Q[n]〈S〉 be nonsingular, reversible, with nonzero constant co-
efficient with respect to S. Let (p/q, Pα) = Asympt(R) as computed by Algorithm 1,
and assume that δ(Pα) < ∞. Algorithm 2 computes a normalized differential operator
D = Normalize(R, p/q) that cancels ũ(z) =

∑∞
n=0 ψnunz

n for all sequences ψ and u such
that

(n+ q)pψn+q = ψn and R · u = 0.
The origin is a regular point of D, and the modulus of the dominant singularities of D
equals δ(Pα).

Proof. Let α = 1/δ(Pα). Let (u[1], . . . , u[s]) be a basis of kerR having the asymp-
totic behaviours given by (7). In particular lim supn→∞|u[k]/n!p/q|1/n ≤ α for all k.
Let (ψ[0], . . . , ψ[q−1]) be the basis of solutions to (n + q)pψn+q = ψn corresponding to
the initial values ψ[i]

j = δij for 0 ≤ i, j < q, where δij is the Kronecker symbol. Al-
gorithm 2 constructs R̂ such that for N large enough, the sq sequences (ψ[j]

n u
[k]
n )n≥N

generate {û | (R̂ · û)n = 0 for n ≥ N}. For all j and k, lim sup|ψ[j]
n u

[k]
n |1/n ≤ α. Assume

that û =
∑
j,k λ

[j,k]ψ[j]u[k] is solution to R̂ · û = 0 in some neighborhood of infinity.
Then lim sup|un|1/n ≤ α (indeed, if ε > 0, then |un| ≤ (α+ ε)n for n large enough). On
the other hand lim sup|ψ[j]

n u
[k]
n |1/n = α for at least one (j, k). Hence, by Theorem 3, the

operator R̂ is normalized and the largest modulus of a root of the characteristic equa-
tion associated to the horizontal edge of its Newton polygon is α. Applying Lemma 7
concludes the proof. 2

In the sequel, we will choose as normalizing sequence the solution to (n+q)pψn+q = ψn
given by

ψn = q−
p
q nΓ(n/q + 1)−p.

Observe that (ψn)n∈N is monotone: indeed, the function x 7→ qxΓ(x + 1) is increasing
for x ≥ 0 as soon as log q > γ (the Euler–Mascheroni constant), and the remaining case
q = 1 is obvious.
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3. Subexponential Behaviour: Majorant Series Computation

The results of the previous section allow us to compute the generic factorial and expo-
nential asymptotic behaviour of solutions of a linear recurrence relation with polynomial
coefficients. We now turn to the computation of a bound for the remaining subexponential
factor of a particular solution.

3.1. Majorant Series and the Cauchy-Kovalevskaya Method

The main tool we use is a variant of the Cauchy-Kovalevskaya majorant series method,
which usually serves to establish the convergence of formal series solutions to differential
and partial differential equations, but may also be applied to obtain explicit bounds on
the tails of these solutions (see also §5.2 for more on this).

Definition 9 (Majorant series). A formal power series v ∈ R+[[z]] is a majorant series
of u ∈ C[[z]], and we write u E v, if |un| ≤ vn for all n ∈ N.

In particular, the disk of convergence of v is contained in that of u, and if z lies
inside the disk of convergence of v, we have that |un;(z)| ≤ vn;(|z|) for all n ≥ 0. Other
immediate properties of majorant series are summarized in the following lemma.

Lemma 10. Assume that u, u[1], u[2] ∈ C[[z]], v, v[1], v[2] ∈ R+[[z]] are such that u E v,
u[1] E v[1] and u[2] E v[2]. Then

du

dz
E
dv

dz
; u[1] + u[2] E v[1] + v[2]; u[1]u[2] E v[1]v[2]; u[2] ◦ u[1] E v[2] ◦ v[1]

where in the last inequality it is assumed that u[1](0) = v[1](0) = 0.

In the neighborhood of an ordinary point, majorant series for the coefficients of a
differential equation like (2) give rise to similar majorants for the solutions. Indeed, if{

u(r) = a[r−1]u(r−1) + · · ·+ a[0]u

v(r) = b[r−1]v(r−1) + · · ·+ b[0]v
|u(0)| ≤ v(0), . . . , |u(r−1)(0)| ≤ v(r−1)(0)

where a[k], b[k] are analytic functions at 0 such that a[k] E b[k] for all k, then by induction
u E v. This result does not hold if one of the a[k] has a pole at 0; however, the method may
be adapted to the case where 0 is a regular singular point of the differential equation.
We give one way to do this in §3.3; for a more complete introduction to the “usual”
Cauchy-Kovalevskaya method in the ODE setting covering the regular singular case,
see Mezzino and Pinsky (1998), and for a more general statement along these lines, see
van der Hoeven (2003, Proposition 3.7). In any case, the first step for obtaining majorant
series for the solutions of a differential equation using the Cauchy-Kovalevskaya method
is to compute majorants for its coefficients, which in the case we are interested in are
rational functions.

3.2. Bounds for Rational Functions

Consider a rational function r(z) = N(z)/D(z) =
∑
rnz

n, D(0) 6= 0. The sequence
(rn) satisfies a linear recurrence relation with constant coefficients, whose characteristic
polynomial is the reciprocal polynomial of D. This recurrence can be solved by partial

10



Algorithm 3: Tight majorant series for rational functions
function BoundRatpoly(r = N/D ∈ Q(z), Pα ∈ Q[z],m ∈ N∗)1

let A+B/D = r with A,B ∈ Q[z].2
compute the squarefree factorization D = D1D

2
2 · · ·Dk

k of D3
compute the coefficients hi,d ∈ Q[ζ] of the partial fraction decomposition4
B(z)
D(z) =

∑k
i=1
∑
Di(ζ)=0

∑i
d=1

hi,d(ζ)
(ζ−z)d . See, e.g., Bronstein (2005, §2.7)

for i = 1, . . . , k do5
for d = 1, . . . , i do6

set ci,d ≥
∑
Di(ζ)=0

∣∣hi,d(ζ)ζ−d∣∣7

set N0 ≥ max
(
1, 1 + degA,maxki=m+1

i−m
log(δ(Di)/δ(Pα))

)
8

let t(n) =
∑k
i=1
∑i−1
d=0 ci,d

(n+1)d−1

(n+1)m−1 (δ(Pα)/δ(Di))n9

compute the truncated series r;N0(z) =
∑N0−1
n=0 rnz

n10
set h(N0) ≥ maxN0−1

n=0
(
|rn| /

((
n+m−1
m−1

)
δ(Pα)n

))
11

return an approximation by excess of max
(
h(N0), t(N0)

)
12

fraction decomposition of r, yielding the explicit expression (recall that xn and xn denote
respectively the falling and rising factorials)

rn =
∑

D(ζ)=0

ord(ζ,D)∑
d=1

h[ζ,d] · (n+ 1)d−1 · ζ−n, n ≥ max(0,degN − degD + 1), (10)

with h[ζ,d] ∈ Q(ζ). We are now aiming at a bound of the form |rn| ≤Mδ(D)−nnordδ D. In
view of later needs, Algorithm 3 takes as input a polynomial Pα and a positive integer m.
It returns a bound of the form r(z) E M(1− αz)−m, where α = 1/δ(Pα). In particular,
when Pα = D and m = ordδ(D) this bound is tight.

To compute a suitable M , we start with the right-hand side of (10) divided by

bn = [zn] 1
(1− αz)m

= (n+ 1)m−1 · αn.

By applying the triangle inequality, we get a sum t(n) of terms of the form

c
(n+ 1)d−1

(n+ 1)m−1
λn

where 0 ≤ c, 0 < λ ≤ 1, and m < d only if λ < 1. Such a term is decreasing for n ≥ 1
if d ≤ m and for n ≥ (d − m)/ log(1/λ) otherwise. We compute an index N0 starting
from which the inequality |rn/bn| ≤ t(n) is guaranteed to hold and t(n) is guaranteed to
be decreasing; then we adjust M from the explicit values of the first N0 coefficients and
bounds on the tails.

For this last part, consider the squarefree decomposition D = D1D
2
2 · · ·Dk

k . If ζ is
a root of Di, then each h[ζ,d] may in fact be written h[ζ,d] = hi,d(ζ) · ζ−d for some
polynomial hi,d ∈ Q[ζ] depending only on Di and d. Moreover, in this expression, |ζ|−1

11



may be bounded by δ(Di)−1. Hence we have∣∣∣∣rnbn
∣∣∣∣ =

∣∣∣∣∣∣α−n
k∑
i=1

∑
Di(ζ)=0

i−1∑
d=0

hi,d(ζ)ζ−d
(n+ 1)d−1

(n+ 1)m−1
ζ−n

∣∣∣∣∣∣
≤

k∑
i=1

i−1∑
d=0

( ∑
Di(ζ)=0

∣∣∣hi,d(ζ)
ζd

∣∣∣) (n+ 1)d−1

(n+ 1)m−1

(
α δ(Di)

)−n
.

(11)

We may take for t(n) the right-hand side of (11), or even a suitable numerical approx-
imation. To deal with the sum in parentheses, we may bound ζ−dhi,d(ζ) term-by-term,
replacing once again ζ` by δ(Di)` or δ(ζdegDiPi(1/ζ))−` depending on the sign of `. We
may also simply compute low-precision enclosures of the roots of Di and then use interval
arithmetic.

The complete procedure is summarized in Algorithm 3. We have thus proved the
following.

Proposition 11. Given r = N/D ∈ Q(z) (in irreducible form), Pα ∈ Q[z], and m ∈ N∗,
such that 0 < δ(Pα) ≤ δ(D) and δ(Pα) = δ(D) only if m ≥ ordδD, Algorithm 3 computes
M = BoundRatpoly(r, Pα,m) ∈ Q+ satisfying r(z) E M(1− z/δ(Pα))−m.

To improve M , we may loop over lines 10 and 11 of Algorithm 3, doubling N0 each
time, until N0 or t(N0)− h(N0) reaches some specified value.

3.3. Bounds for D-finite Functions

We now apply the Cauchy-Kovalevskaya method to deduce a majorant series for u(z)
from the asymptotic behaviour of (un) obtained in §1 and majorant series for the coeffi-
cients of an associated differential equation. The majorant series we obtain is “simpler”
than u(z) in the sense that it always satisfies a differential equation of order 1.

By Fuchs’ criterion, we may isolate the constant term of each coefficient of (9), giving

Q(θ) · u = z(ã[r−1]θr−1 + · · ·+ ã[1]θ + ã[0]) · u, (12)

where Q ∈ Q[X] is a monic polynomial of degree r and the ã[k] are rational functions
of z. Let mk ∈ N be the maximum multiplicity of a point of the circle |z| = δ(Pα) as
a pole of ã[k] and let T = max(0,maxr−1

k=0(mk − r + k)). We emphasize that, although
Algorithm 4 takes Pα as input, the whole point of the method is that δ(Pα) may indeed
equal the modulus of the dominant singularities of D. In that case, the integer T is
sometimes called the Malgrange irregularity of these singularities (see Malgrange, 1974),
and by Fuchs’ criterion again, T = 0 if and only if the dominant singularities are all
regular. Using Algorithm 3, we compute bounds of the form

ã[k] E
M [k]

(1− αz)r−k+T
i.e.,

∣∣∣ã[k]
n

∣∣∣ ≤M [k]
(
n+ r − k + T − 1
r − k + T − 1

)
αn (13)

for the coefficients of the equation, with α = 1/δ(Pα) as usual (lines 6–7 of Algorithm 4).
Extracting the coefficient of zn in (12), we get

Q(n)un =
n−1∑
j=0

r−1∑
k=0

ã
[k]
n−1−jj

kuj . (14)

12



Algorithm 4: Majorant series for normalized D-finite functions
function BoundNormalDiffeq(

∑r
k=0 a

[k]θk ∈ Q[z]〈θ〉, Pα ∈ Q[z], u;·)1
for k = 0, . . . , r − 1 do2

c[k] ← (a[k]/a[r])z=0 (or fail with error “0 should be a regular point”)3
ã[k] ← (a[k]/a[r] − c[k])/z4

T ← max{0; ordδ(den ã[k])− r + k | 0 ≤ k < r − 1 and δ(den ã[k]) = δ(Pα)}.5
for k = 0, . . . , r − 1 do6

M [k] ← BoundRatpoly(ã[k], Pα, T + r− k) . thus ã[k] E M [k](1−αz)−T−r+k7

M ← maxr−1
k=0M

[k]/
(
r−1
k

)
8

compute K ∈ N∗ such that K ≥ 2Mδ(Pα)9

starting with N2 = 1, double N2 until
∑r−1
k=0

∣∣c[k]∣∣Nk
2 < (1−Mδ(Pα)/K)Nr

210
compute u;N2+1 and v;N2+1 where v is given by (18) with A = 111
A← maxN2

n=0 |un| /vn12
return (T,K,A)13

Since Q is monic, let N1 be such that Q(n) > 0 for n ≥ N1; then by (13), for such n,

Q(n) |un| ≤
n−1∑
j=0

r−1∑
k=0

M [k]
(
n−1−j + r−k+T − 1

r−k+T − 1

)
αn−1−jjk |uj | . (15)

Lemma 12 (Reduction from order r to order 1). Let M = maxr−1
k=0M

[k]/
(
r−1
k

)
and

0 ≤ j ≤ n− 1; then
r−1∑
k=0

M [k]
(
n−1−j + r−k+T−1

r−k+T−1

)
jk ≤Mnr−1

(
n−1−j+T

T

)
.

Proof. For k ≤ r − 1, we have(
n−1−j+T

T

)−1(
n−1−j + r−k+T−1

r−k+T−1

)
= (n− j + T )r−1−k

(T + 1)r−1−k
≤ (n− j)r−1−k;

thus(
n−1−j+T

T

)−1 r−1∑
k=0

M [k]
(
n−1−j + r−k+T−1

r−k+T−1

)
jk ≤

r−1∑
k=0

M [k]jk(n− j)r−1−k

≤Mnr−1,

establishing the lemma. 2

With M as in Lemma 12, choose K > M/α. Let N2 ≥ N1 be such that Mnr ≤
αKQ(n) for n ≥ N2. Suppose that some sequence (vn) satisfies vn ≥ |un| for 0 ≤ n ≤ N2
and

vn = 1
n

n−1∑
j=0

K

(
n−1−j + T

T

)
αn−jvj (16)

13



for all n ≥ 1. Let n ≥ N2. Assuming |uj | ≤ vj for all j ≤ n − 1, and using (15) and
Lemma 12, we get

Mnr

αK
|un| ≤ Q(n) |un| ≤

n−1∑
j=0

Mnr−1
(
n−1−j + T

T

)
αn−1−jvj = Mnr

αK
vn,

hence by induction |un| ≤ vn for all n ∈ N. Now (16) translates into

v′(z) = αK

(1− αz)T+1 v(z), (17)

which admits the simple solutions (18) below.
Finally, we adjust the integration constant A so as to ensure that |un| ≤ vn for n < N2

(lines 11–12). If no specific solution of (9) is given (i.e., if we drop the parameter u;n of
Algorithm 4) we still obtain a result valid up to some multiplicative constant by simply
ignoring this last part. The result of this computation is summarized in the following.

Proposition 13. Let D ∈ Q[z]〈θ〉, and let u;n be a function that computes truncated
series expansions of a specific u ∈ kerD up to any order n. Let Pα ∈ Q[z]. Assume that 0
is a regular point of D and that the dominant singularities of D are finite and of modulus
at least δ(Pα). Then BoundNormalDiffeq(D,Pα, u;·) (Algorithm 4) returns T ∈ N, K ∈
N∗, A ∈ Q+ such that

u(z) E v(z) =


A

(1− αz)K
if T = 0

A exp K/T

(1− αz)T
otherwise.

(18)

In addition to its modulus α, Algorithm 4 actually preserves the irregularity T of the
dominant singularity of the differential equation, which is connected to the subexponen-
tial growth of the coefficient sequence.

Remark 14. Sometimes all we need is a simple majorant series satisfying the tightness
property of Theorem 1 for the solutions of a differential equation of the form (2) at an
ordinary point. Instead of the results of this section, we may then apply the “plain”
Cauchy-Kovalevskaya method outlined in §3.1 using a majorant equation of the form

v(r) = M

(1− αz)N
r−1∑
k=0

(
r − 1
k

)
Nr−k

( α

1− αz

)r−k
v(k).

This gives the majorant series v(z) = exp
(
M/(1 − αz)N

)
. If additionally the dominant

singularity is regular, we may instead use the Euler equation

v(r) =
r−1∑
k=0

M [k]

(1− αz)r−k
v(k),

yielding v(z) = A/(1 − αz)λ where αrλr −M [r−1]αr−1λr−1 − · · · −M [0] = 0. In both
cases suitable parameters M , resp. M [k] may be determined using Algorithm 3.

14



Algorithm 5: Bounds for general P-recursive sequences
function BoundRec(R =

∑s
k=0 b

[k](n)Sk ∈ Q[n]〈S〉, [u0, . . . , us−1] ∈ Q[i]s)1
R← R · S−m where m = min{k | p[k] 6= 0}2
(κ, Pα)← Asympt(R)3
. Normalize and encode the subexponential part by a differential equation
D ← Normalize(R, κ)4
. Bound the solutions of the differential equation
define a function ũ;· that “unrolls” the recurrence relation R · u = 0 starting5
from u0, . . . , us−1 to compute ũ;n =

∑n
k=0 q

−pk/qΓ(k/q + 1)−pukzk (where
p/q = κ) for any n ∈ N
(T,K,A)← BoundNormalDiffeq(D,Pα, ũ;·)6
return (κ, T, Pα,K,A)7

4. Explicit Bounds

4.1. P-Recursive Sequences

At this point, we are able to bound un by a sequence vn given by its generating series
v(z) = L′p,q ṽ(z), where ṽ is an explicit series satisfying a differential equation of the first
order, and we have denoted

L′p,qv(z) =
∞∑
n=0

vn
ψn

zn.

(Note that series whose coefficients satisfy recurrence relations of the first order, that
is, hypergeometric series, cannot serve as asymptotically tight bounds for normalized
D-finite functions because the range of asymptotic behaviours that their coefficient se-
quences assume is not wide enough: their “subexponential” asymptotic growth is always
polynomial.)

Proposition 15. Given as input a nonsingular reversible recurrence operator R ∈
Q[n]〈S〉 along with initial values u0, . . . , us−1 ∈ Q[i] defining a solution (un) ∈ Q[i]N
of R · u = 0, the function BoundRec (Algorithm 5) computes p/q ∈ Q, Pα ∈ Q[z], T ∈ N
and K,A ∈ R+ such that

∀n ∈ N, |un| ≤ vn = q
p
q n Γ

(n
q

+ 1
)p
ṽn (19)

where ṽn is defined as in (18). Additionally, for generic (u0, . . . , us−1),

lim sup
n→∞

∣∣∣∣unvn
∣∣∣∣1/n = 1.

Allowing initial conditions in Q[i] rather than Q is convenient in view of some appli-
cations to numerical computations with D-finite functions (§5).

Proof. This follows from combining the statements of Propositions 6, 8 and 13. Recall
that we have chosen ψn = q−

p
q nΓ(n/q + 1)−p. After Line 2 of Algorithm 5, the oper-

ator R satisfies the hypotheses of Proposition 8. Hence the operator D computed on
Line 4 cancels ũ(z) =

∑∞
n=0 ψnunz

n, and the function ũ;· defined on the next line does
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indeed compute truncations of this series. By Proposition 13 it follows that ũ E ṽ and,
multiplying the coefficients by ψ−1

n , that u E v. Finally, for generic initial values,

lim sup
n→∞

∣∣∣∣unvn
∣∣∣∣1/n = lim sup

n→∞

∣∣∣ un
n!καn+o(1)nO(1)

∣∣∣1/n = 1

by Proposition 6. 2

Although this representation (19) is satisfactory for many applications, more explicit
expressions for the coefficients vn are sometimes desirable. If T = 0, it is readily seen
that

ṽn = Aαn
(
n+K − 1
K − 1

)
. (20)

For T > 0, the general coefficient ṽn still admits a rather complicated “closed-form”
expression in terms of the general hypergeometric function F (see Graham et al., 1989,
§5.5): one may check that

ṽn = Aαn
∞∑
k=0

1
k!

(
Tk + n− 1

n

)(
K

T

)k
= Aαn TFT

n+T
T

n+T+1
T · · · n+2T−1

T

T+1
T

T+2
T · · · 2T

T

∣∣∣∣∣KT
 .

However, ṽn may in turn be bounded by much simpler expressions without losing the
asymptotic tightness (in the sense of Theorem 1) using a simple version of the saddle
point method (see, e.g., Flajolet and Sedgewick, 2009, §4.3). Since ṽ ∈ R+[[z]], for any
t ∈ (0; 1/α), we have ṽn ≤ ṽ(t)/tn. For fixed n, the right-hand side is minimal for
the unique tn ∈ (0; 1) such that Kαtn = n(1 − αtn)T+1. Asymptotically, tn satisfies
1− αtn ∼ (K/n)1/(T+1) as n→∞. This approximation suits our purposes well: indeed,
we set

rn = 1
α

(
1−

( K

n+K + 1

) 1
T+1
)
. (21)

(The term K + 1 in the denominator does not change the asymptotic behaviour and is
such that rn ∈ (0; 1/α).) For T > 0, we obtain (with A = 1)

ṽn ≤
ṽ(rn)
rnn

= αn
(

1−
( K

n+K + 1

) 1
T+1
)−n

exp

(
K

T

(
n+K + 1

K

) T
T+1
)

= αn expO(nT/(T+1)),

(22)

and similarly

ṽn ≤ αn
(n+K + 1

K

)K(
1− K

n+K + 1

)−n
= αnnO(1) (23)

if T = 0.
Going back to vn itself, (22) and (23) extend to bounds of the form (3), that make

the asymptotic behaviour un = n!κ αn eo(n) apparent, by means of the following relation
between ψn and n!κ.

Lemma 16. For q ∈ N \ {0} and n ≥ 3q/2,

1
ψn

= Γ(n/q + 1)pqp/q n ≤

{
(2π)p/q (n/q + 1)p n!p/q, p > 0
n−p/q n!p/q, p < 0.

16



Proof. Since Γ(x) is increasing for x ≥ 3/2,
q−1∏
k=0

Γ(n/q + k/q) ≤ Γ(n/q + 1)q ≤
q−1∏
k=0

Γ(n/q + k/q + 1).

By Gauß’ multiplication theorem (see Abramowitz and Stegun, 1972, Formula 6.1.20)

Γ(qz) = (2π)(1−q)/2qqz−1/2
q−1∏
k=0

Γ
(
z + k

q

)
(z ∈ C),

this implies that

(2π)(q−1)/2

nq−1/2 ≤ qnΓ(n/q + 1)q

Γ(n+ 1)
≤ (2π)(q−1)/2(n+ 1)q−1

qq−1/2

and the result follows by raising either inequality to the power of p/q depending on the
sign of p. 2

This concludes the proof of Theorem 1.

Remark 17. If we content ourselves with computing a numerical bound for one coeffi-
cient (or one tail, see next section) of a D-finite power series—that is, a bound for fixed n,
as opposed to a formula giving a bound as a function of n—then majorant series with the
same radius of convergence as the coefficients of the equation (and thus the method of
§3.3) are not strictly necessary for the bound to become ultimately tight as n approaches
infinity. Consider for instance Equation (1) in the case where 0 is an ordinary point, and
assume ν > α with the notations of §3.3. Van der Hoeven (2003, §3.5) proves that if
p[k]/p[r] E M(ν)/(1− νz) for k = 0, . . . , r − 1, then

u(z) E
C

(1− νz)d(M(ν)+1)/νe

where C does not depend on ν. Also assume that the majorizing procedure for rational
functions used to compute M(ν) is tight enough to ensure that M(ν) = O

(
nd(α/ν)n

)
(as is Algorithm 3, with d = maxr−1

k=0mk). In a manner somewhat reminiscent of the
saddle-point method, we then choose, say, ν = νn = (1 + 1/n1/(2d))α, hence getting

|un| ≤ vn = αn+n1−1/(2d)
.

This suggests that it is sensible to take ν = (1+1/nΘ(1/d))α in the algorithms of van der
Hoeven (2001, 2003).

4.2. Tails of Power Series

In Examples 2(c) and (d), the sequence for which we compute an upper bound is
the tail tn = un;(1) of a convergent series whose coefficients un are given by a linear
recurrence relation of the form (1). In such a case, the sequence tn is also P-recursive,
but its initial values are unknown—if we have in mind the evaluation of the sum of the
series, these initial values are precisely what we are after. However, if u(z) E v(z), the
general properties of majorant series (§3) ensure that |un;(1)| ≤ vn;(1). To avoid repeated
majorant computations when working with D-finite power series, notably in the context of
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Figure 3. From bottom to top, log(erfn;(5)), log |erfn;(5i)| and log(b(n)) where b(n) is the bound
(25) with parameters computed by Algorithm 5.

numerical analytic continuation (see §5.2), we actually consider the slightly more general
problem of bounding the tails u(j)

n; (z) of the j-th derivative of u at any point z such that
|z| < δ(p[r]), where p[r] is the leading term of a differential equation with polynomial
coefficients annihilating u(z).

We assume once again that we have computed κ = p/q and ṽ such that u(z) E
v(z) = L′p,q ṽ(z) (with p ≤ 0, so that the radius of convergence of v is positive) using the
algorithms of §2 and §3. The letters α, T , K denote the parameters of ṽ appearing in
(18). The formalism of majorant series proves handy here, as we have |u(j)

n; (z)| ≤ v(j)
n; (|z|)

by Lemma 10. Notice that if p < 0, the point z lies within the disk of convergence of v
but not necessarily in that of ṽ.

Proposition 18 (Bound on un;(z) for large n). With z and v as above, assume that

n >


(1− α |z|)−T−1K, κ = 0

(α |z|)−q/p
(

1−
( K

(α |z|)−q/p +K + 1

) 1
T+1
)q/p

, κ < 0.
(24)

Then for all j, we have∣∣∣u(j)
n; (z)

∣∣∣ ≤ ṽ(j)(rn)
q−

p
q nΓ(nq + 1)−p

( |z|
rn

)n
h
( |z|
rn

)
, (25)

where rn is given by (21) and

h(x) = 1
1− xq/(n+ q)−p

q−1∑
u=0

xu (= 1/(1− x) for κ = 0, i.e. p/q = 0/1).

The bound (25) is generically tight up to subexponential factors.
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Figure 3 illustrates the behaviour of this bound for entire functions, in the typical
situation where the Taylor series at the origin “starts converging” only beyond a signifi-
cant “hump”. Once again, the factor n!p/q in (25) can be brought out explicitly if desired
using Lemma 16.

Proof. In the case κ = 0, the condition (24) ensures that |z| < rn < α−1. Using the
relation ṽn = ψnvn and the saddle-point bound ṽk ≤ ṽ(rn)/rkn (notice the n), we obtain∣∣∣u(j)

n; (z)
∣∣∣ ≤ v(j)

n; (|z|) ≤ ṽ(j)(rn)
ψn

( |z|
rn

)n ∞∑
k=0

ψn
ψn+k

( |z|
rn

)k
.

This proves (25) for κ = 0. Now assume p < 0, and recall that in this case ψn =
q−p/qΓ(n/q + 1)−p is increasing: hence
∞∑
k=0

ψn
ψn+k

xk ≤
∞∑
t=0

q−1∑
u=0

ψn
ψn+tq

xtq =
q−1∑
u=0

xu
∞∑
t=0

xtq(
(n+ q)(n+ 2q) . . . (n+ tq)

)−p ≤ h(x)
for n ≥ x−q/p. But this last condition follows from (24) since( |z|

rn

)−q/p
< (α |z|)−q/p

(
1−

( K

(α |z|)−q/p +K + 1

) 1
T+1
)q/p

as soon as n > (α |z|)−q/p, itself implied by (24).
The estimates (22), (23) still hold, hence the tightness of the bound. 2

Bounds on un;(z) are sometimes useful also when the condition (24) fails to be satisfied,
especially for n = 0. Simple bounds independent on n give good results.

Proposition 19 (Bound on un;(z) for small n). For all n ∈ N and 0 < r < α−1,

∣∣∣u(j)
n; (z)

∣∣∣ ≤

v(j)(|z|) κ = 0

v(j)(r) exp
(
−p
q

( |z|
r

)−q/p) q−1∑
u=0

( |z|
r

)u
κ < 0.

(26)

Proof. The proof is similar to that of Proposition 18. For κ = 0 the result is obvious.
Assuming κ < 0, it holds for all x > 0 that

∞∑
k=n

xk

ψk
≤

q−1∑
u=0

xu
∞∑

t=bn/qc

xqt

ψqt
≤

q−1∑
u=0

xu
∞∑

t=bn/qc

(−pqx
−q/p)−pt

(−pt)!

since ψqt = q−ptt!−p ≥ (−q/p)−pt(−pt)! (t ∈ N); whence∣∣∣u(j)
n; (z)

∣∣∣ ≤ ṽ(j)(r)
∞∑
k=n

1
ψk

( |z|
r

)k
≤ v(j)(r) exp

(
−p
q

( |z|
r

)−q/p) q−1∑
u=0

( |z|
r

)u
.

2
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In the important case where κ = T = 0 and K ∈ N, the vn;(z) actually admit closed-
form expressions of the form (αz)np(n), where p ∈ Q(αz)[n]. Indeed, starting from (18)
and writing (for fixed K) (n+ k + 1)K−1 =

∑K
i=1 c

[i](n)(k + 1)i−1, we get(
1

(1− αz)K

)
n;

= (αz)n

(K − 1)!

∞∑
k=0

(n+K + 1)K−1(αz)k = (αz)n

(K − 1)!

K∑
i=1

(i− 1)!
(1− αz)i

c[i](n).

This is the kind of formula that appears in Example 2(c). Such bounds are easier to read
than (25), but they are numerically unstable due to cancellations. In a system providing
numerical routines for hypergeometric functions, one can use the alternative expression(

1
(1− αz)K

)
n;

= (αz)n
(
n+K − 1
K − 1

)
2F1

(1 n+K

n+ 1

∣∣∣∣αz)
which does not suffer from this shortcoming.

Finally, note that it might be worthwhile looking for refined bounds in applications
where T is large and |z| ' α−1, since (25) becomes tight only for very large n in this case.
Similar issues exist whenK is too large; they may be mitigated by modifying Algorithm 3
to compute bounds of the form p(z)+M/(1−αz)m, p ∈ Q+[z], which allows for a tighter
choice of K.

5. Applications and Experiments

5.1. Implementation

We have implemented the algorithms described in this article (with slight variations)
in the computer algebra system Maple. Our implementation is part of a submodule called
NumGfun of the Maple package gfun 3 , but the code computing bounds is largely self-
contained. It provides routines that compute majorant series for rational polynomials
(following §3.2) and D-finite functions (§3.3, §4.1), and symbolic bounds for P-recursive
sequences specified either using recurrence relations (§4.1) or as tails of D-finite series
(§4.2). All examples of this article were computed using this implementation 4 .

It is also used by the Dynamic Dictionary of Mathematical Functions 5 , an interactive
web-based handbook of D-finite functions currently under development. All contents of
the Dictionary are automatically generated from a compact description of each function
(basically, a differential equation and initial values) using a mix of symbolic computation
algorithms and document templates. The webpages the system produces are interac-
tive in that they allow the user to trigger more computations, typically by asking for
“more terms” in an asymptotic expansion. This is a situation where being able to display
human-readable formulae rather than merely computing numerical bounds represents a
significant benefit. Code based on this article provides majorant series for the Taylor
expansions of the functions, truncation orders for these expansions to reach a given ac-
curacy over a given disk, and symbolic bounds for their tails involving the truncation
order.

3 http://algo.inria.fr/libraries/papers/gfun.html
4 To be precise, using gfun v. 3.48 under Maple 13.
5 http://ddmf.msr-inria.inria.fr/
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5.2. Application to the Numerical Evaluation of D-Finite Functions

Guaranteed numerical computation with entire classes of functions usually involves the
automatic computation of error bounds relating approximations, e.g., by truncated power
series, to the functions they approximate. Elementary results from real and complex anal-
ysis commonly used to compute such error bounds include the alternating series criterion,
Cauchy’s integral formula, and several variants of Taylor’s theorem. Karatsuba describes
algorithms with error bounds for the evaluation of various special functions, including
the hypergeometric function 2F1 (see Karatsuba, 1999, and the references therein). Du
and Yap (2005) provide bounds for the tails of the general hypergeometric series, where
the parameters are allowed to vary, based on a detailed analysis of the variations of
the coefficient sequence. For the more general case of D-finite functions, another ad hoc
method is given by van der Hoeven (1999). In a different context, Neher (2003) uses
Cauchy’s estimate and complex interval arithmetic to bound the coefficients and tails
of series expansions of arbitrary “explicit enough” analytic functions. This method is
implemented in ACETAF (Eble and Neher, 2003).

A further classical tool is the Cauchy-Kovalevskaya majorant series method discussed
in §3.1. This idea is exploited by van der Hoeven (2001, §2.4) to bound the tails of
power series expansions of D-finite functions in the neighbourhood of an ordinary point
of the equation, and later again in a much more general setting covering a wide range
of functional equations (van der Hoeven, 2003). This is the approach we rely on in this
article: indeed, the algorithm we described in §3.3 may actually be seen as a refinement of
those suggested in §3.5 and §5.2 of the latter article. The main originality of our approach
is the asymptotic tightness of the bounds.

Finally, it should be noted that in the context of numerical evaluation, instead of using
a priori bounds, it is often easier to compute successive error bounds in parallel to succes-
sive approximations of the result, until the desired accuracy is reached. The computation
of validated numerical enclosures of solutions of ODE, DAE and more general functional
equations has been the subject of extensive literature since the sixties (see Rihm, 1994)
in the area of interval methods. Of special interest when working with power series is
the integration of differential equations using Taylor models (see Hoefkens, 2001; Neher
et al., 2007). Taylor models are one among a fair number of different symbolic-numeric
representations of functions used in interval arithmetic, several of which have a similar
approach of bounds for solutions of functional equations: for more on Taylor models and
their relation to other interval methods, see (Makino and Berz, 2003; Neumaier, 2003).
Some of these methods were imported to computer algebra and revisited by van der
Hoeven (2007) in the context of rigorous effective complex analysis.

In a nutshell, the common idea is to write the (differential, say) equation at hand in
fixed-point form u = Φ(u), where Φ is an integral operator, and to consider the action
of Φ on truncated power series augmented with error bounds, using rules such as∫ x

(a0 + a1t+ a2t
2 + [α, β])dt ⊆

∫ x

(a0 + a1t)dt+B
(
a3
x3

3

)
+ [α, β] ·B(x).

Here B(p) is an interval containing the range of p(x) obtained from the range of x.
One then computes an approximate solution in the form of a Taylor expansion p(x) =
a0 + · · ·+anxn and iteratively searches for a tight interval [α, β] such that Φ(p+[α, β]) ⊂
p + [α, β], possibly narrowing the range of x or increasing the expansion order n as
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necessary. Under mild assumptions, the existence of such p + [α, β] implies that of an
actual solution u ∈ p+ [α, β] of Φ(u) = u.

While this is reported to provide tight numerical enclosures at reasonable cost for
computations at machine precision even in the case of nonlinear equations in many vari-
ables, we are not aware of any asymptotic tightness result of the kind we are interested
in in this paper. In fact, it is not entirely clear to us under which conditions methods
of this kind are guaranteed to produce arbitrarily tight enclosures. (Note however that
van der Hoeven (2007) states initial results in this direction.) Neither do we know how
to use them to bound tails of D-finite functions on their whole disk of convergence.

And yet, D-finite functions may be evaluated to an absolute precision 10−n in softly
linear time n(logn)O(1) by computing truncations of their Taylor series by binary split-
ting. Numerical analytic continuation based on this technique then allows to obtain values
of these functions at any point of their Riemann surfaces (Chudnovsky and Chudnovsky,
1988, §5). Applications include the numerical computation of monodromy matrices of
linear differential equations with polynomial coefficients. In this context, one benefit of
the language of majorant series is that a single majorant encodes both bounds on the
values and truncation orders for all elements of a basis of the local solutions of the dif-
ferential equations as well as their derivatives—all of which are useful to control errors
in the numerical analytic continuation process.

Excluding degenerated cases, the number of terms of the series to take into account
is λn + o(n), where λ depends on the location of the evaluation point relative to the
singularities of the function, or O(n/ logn) in the case of entire functions. The tightness
result of Theorem 1 translates into the fact that the numberN of terms that get computed
is indeed of that order, while most existing methods for computing bounds of tails of
D-finite series seem to ensure only N = O(n). This in turn improves the complexity of
the algorithm by a constant factor.

The subpackage of gfun mentioned above contains high-precision numerical evaluation
and analytic continuation routines based on this strategy. They rely on the code com-
puting bounds for accuracy control. These numerical evaluation facilities are exported to
the DDMF.

5.3. Experiments

In Table 1, we report on experiments concerning the tightness of the bounds for trun-
cating Taylor series expansions of a few common elementary and special functions. Each
column label actually stands for a differential equation that annihilates the given function
(with suitable initial values), and an evaluation point smaller in absolute value than the
dominant singularity of the differential equation. Each internal cell shows the truncation
order computed by the algorithm from this data for a specific accuracy requirement, and
compares it to the minimal correct answer, computed by exhaustive search. For instance,
the column “erf(1)2” corresponds to the evaluation at z = 1 of the function u(z) = erf(z)2
represented as the unique solution of

(2 + 8z2)u′(z) + 6z u′′(z) + u′′′(z), u(0) = 0, u′(0) = 0, u′′(0) = 8
π
.

Using a majorant series for u, our algorithm determined that |u;190(1)− u(1)| ≤ 10−100,
but it happens that only the first 163 of these 190 terms are really necessary. It can be
seen that the bounds we compute do not stray too far from the optimal values.
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Regular dominant singularity
1

(1−z)2 @ 1
2

cos z
1−z @ 1

2
cos z
1−z2 @ 1

2
cos z

(1−z)2 @ 1
2

(z+1)2 cos z
(z3+z+1)2 @ 1

10

10−10 40/40 46/34 54/33 54/39 24/12

10−100 342/342 350/333 364/331 364/341 140/121

10−1000 3336/3335 3346/3323 3366/3321 3366/3334 1232/1201
arccot(z)

(z2−1)(z2+5) @ 1
2 ψ(1/2) arctan 1

2 arctan 9
10 arctan 99

100

10−10 64/27 40/23 44/28 336/164 4238/1496

10−100 380/321 342/313 348/324 2338/2108 25210/21848

10−1000 3392/3307 3336/3293 3344/3310 22050/21754 231844/227810

Finite irregular dominant singularity

cos z
1−z @ 1

3 sin z
1−z @ 1

3 exp z
(1−z)2 @ 1

2 exp z
1−z2 @ 1

2 erf
(

1+z
2z2−1

)
@ 1

9

10−10 48/25 46/24 118/79 68/42 28/12

10−100 290/224 290/225 558/497 416/364 244/132

10−1000 2416/2150 2416/2149 4154/4001 3566/3432 2384/1292
exp(1/(1−z))

(1−z) @ 1
2 Bi

(
1

1−z

)
@ 1

2 Ai
(

1
1−z

)
@ 1

2 Ai
(

1
1−z

)
@ 3

4 Ai
(

1
1−z

)
@ 7

8

10−10 70/54 148/56 142/30 1558/77 23818/215

10−100 418/387 664/416 660/345 3430/879 29258/2025

10−1000 3568/3490 4700/3645 4694/3406 16284/8372 69594/18529

Dominant singularity at infinity

Ai(4i+ 4) Bi(4i+ 4) Si(1) cos(1) sin(1)

10−10 92/59 92/59 16/12 18/13 18/14

10−100 226/200 226/200 74/68 76/69 74/70

10−1000 1054/1031 1054/1031 454/448 456/449 456/450

e−100 erf2(1) erf(1) erf(10) erf(100)

10−10 298/291 60/33 36/24 628/574 54492/54388

10−100 456/450 190/163 150/138 936/894 54904/54800

10−1000 1406/1402 1036/1011 908/898 2828/2800 58870/58772

Table 1. Computed/minimal required number of terms of the Taylor expansion of a D-finite
function to approximate this function to a given absolute precision. In this table, ψ is the solution
of the spheroidal wave equation (1− z2)ψ′′(z)− 2(b− 1)z ψ′(z) + (c− 4qz2)ψ(z) = 0 given by
the choice of parameters and initial values b = 1/2, q = 1/3, c = 1, ψ(0) = 1, ψ′(0) = 0; Ai and
Bi denote the Airy functions; erf stands for the error function and Si for the integral sine.

23



We consider three cases, corresponding to the three main types of asymptotic be-
haviours that the coefficient sequence of a convergent D-finite series may exhibit, char-
acterized (in generic cases) by the nature of the dominant singularities of the differential
equation: regular singularities (κ = 0 = T with the notations of the previous sections),
irregular singularities at finite distance (κ = 0, T > 0), or at infinity (κ < 0). (Irregular
singularities with κ > 0 correspond to divergent power series, and a differential equation
whose only singularity is a regular singular point at infinity has only polynomial solu-
tions. The examples of the second set all involve right composition by rational functions
because it is unusual to study differential equations with more than two irregular singular
points, and those are usually taken to be ∞ and 0.)

For each of these, the last three columns illustrate how the truncation orders and the
bounds vary as |z| approaches the radius of convergence of the series. Note that high-
order Taylor expansions at 0 are not the best way to compute numerical values of D-finite
functions for such z: the growth of the truncation orders (both optimal and computed)
can be got around by using several steps of analytic continuation along a broken-line
path from 0 to z (Chudnovsky and Chudnovsky, 1987, §4).

The example of Si(z) has an interesting feature: the origin is a regular singular point
of the differential equation mentioned in Example 2(d), but Si(z) may nevertheless be
defined by simple initial values at origin, so that our algorithm applies without any
adjustment.

Finally, here is a nontrivial “non-generic” example where our method fails to produce
a tight bound.

Example 20. In his proof or the irrationality of ζ(3), Apéry (1979) introduces two
sequences (an) and (bn) such that un = bn − ζ(3)an satisfies the (minimal-order) linear
recurrence relation

(n+2)3 un+2 = (2n+3)(17n2+51n+39)un+1−(n+1)3 un, u0 = −ζ(3), u1 = 6−5ζ(3).

Applied to this recurrence relation, Algorithm 5 determines that

|un| ≤ 1.21 (n2 + 3n+ 2) (17 + 12
√

2)n (where (17 + 12
√

2) ' 33.97)

This bound is asymptotically tight for both an and bn, but the whole point of Apéry’s
proof is that bn − ζ(3)an → 0 fast as n→∞.
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